Numerical simulation of mechatronic sensors and actuators /
Kaltenbacher, Manfred, 1968-
Numerical simulation of mechatronic sensors and actuators / Manfred Kaltenbacher. - 2nd ed. - Berlin ; New York : Springer, c2007. - xviii, 428 p. : ill. ; 25 cm.
Includes bibliographical references (p. [411]-422) and index.
Cover --
Contents --
1 Introduction --
2 The Finite Element (FE) Method --
2.1 Finite Element Formulation --
2.2 Finite Element Method for a 1D Problem --
2.3 Nodal (Lagrangian) Finite Elements --
2.3.1 Basic Properties --
2.3.2 Quadrilateral Element in IR2 --
2.3.3 Triangular Element in IR2 --
2.3.4 Tetrahedron Element in IR3 --
2.3.5 Hexahedron Element in IR3 --
2.3.6 Global/Local Derivatives --
2.3.7 Numerical Integration --
2.4 Finite Element Procedure --
2.5 Time Discretization --
2.5.1 Parabolic Differential Equation --
2.5.2 Hyperbolic Differential Equation --
2.6 Integration over Surfaces --
2.7 Edge (Nédélec) Finite Elements --
2.8 Discretization Error --
3 Mechanical Field --
3.1 Navier's Equation --
3.2 Deformation and Displacement Gradient --
3.3 Mechanical Strain --
3.4 Constitutive Equations --
3.4.1 Plane Strain State --
3.4.2 Plane Stress State --
3.4.3 Axisymmetric Stress-Strain Relations --
3.5 Waves in Solid Bodies --
3.6 Material Properties --
3.7 Numerical Computation --
3.7.1 Linear Elasticity --
3.7.2 Damping Model --
3.7.3 Geometric Non-linear Case --
3.7.4 Numerical Example --
3.8 Locking and Effcient Solution Approaches --
3.8.1 Incompatible Modes Method --
3.8.2 Enhanced Assumed Strain Method --
3.8.3 Balanced Reduced and Selective Integration --
4 Electromagnetic Field --
4.1 Maxwell's Equations --
4.2 Quasistatic Electromagnetic Fields --
4.2.1 Magnetic Vector Potential --
4.2.2 Skin Effect --
4.3 Electrostatic Field --
4.4 Material Properties --
4.4.1 Magnetic Permeability --
4.4.2 Electrical Conductivity --
4.4.3 Dielectric Permittivity --
4.5 Electromagnetic Interface Conditions --
4.5.1 Continuity Relations for Magnetic Field --
4.5.2 Continuity Relations for Electric Field --
4.5.3 Continuity Relations for Electric Current Density --
4.6 Numerical Computation: Electrostatics --
4.7 Numerical Computation: Electromagnetics --
4.7.1 Formulation --
4.7.2 Discretization with Edge Elements --
4.7.3 Discretization with Nodal Finite Elements --
4.7.4 Newton's Method for the Non-linear Case --
4.7.5 Approximation of B-H Curve --
4.7.6 Modelling of Current-loaded Coil --
4.7.7 Computation of Global Quantities --
4.7.8 Induced Electric Voltage --
4.8 Numerical Examples --
4.8.1 Ferromagnetic Cube --
4.8.2 Thin Iron Plate --
5 Acoustic Field --
5.1 Wave Theory of Sound --
5.1.1 Conservation of Mass (Continuity Equation) --
5.1.2 Conservation of Momentum (Euler Equation) --
5.1.3 Pressure-Density Relation (State Equation) --
5.1.4 Linear Acoustic Wave Equation --
5.1.5 Acoustic Quantities --
5.1.6 Plane and Spherical Waves --
5.2 Quantitative Measure of Sound --
5.3 Non-linear Acoustic Wave Equation --
5.4 Numerical Computation
Covers both the detailed physical modeling of mechatronic systems and their precise numerical simulation using the Finite Element (FE) method. This book includes a section discussing locking effects as occurring in the numerical computation of thin mechanical structures.
354071359X 9783540713593
2007924154
Microelectromechanical systems.
Mechatronics.
TK7875 / .K35 2007
621 / K.M.N
Numerical simulation of mechatronic sensors and actuators / Manfred Kaltenbacher. - 2nd ed. - Berlin ; New York : Springer, c2007. - xviii, 428 p. : ill. ; 25 cm.
Includes bibliographical references (p. [411]-422) and index.
Cover --
Contents --
1 Introduction --
2 The Finite Element (FE) Method --
2.1 Finite Element Formulation --
2.2 Finite Element Method for a 1D Problem --
2.3 Nodal (Lagrangian) Finite Elements --
2.3.1 Basic Properties --
2.3.2 Quadrilateral Element in IR2 --
2.3.3 Triangular Element in IR2 --
2.3.4 Tetrahedron Element in IR3 --
2.3.5 Hexahedron Element in IR3 --
2.3.6 Global/Local Derivatives --
2.3.7 Numerical Integration --
2.4 Finite Element Procedure --
2.5 Time Discretization --
2.5.1 Parabolic Differential Equation --
2.5.2 Hyperbolic Differential Equation --
2.6 Integration over Surfaces --
2.7 Edge (Nédélec) Finite Elements --
2.8 Discretization Error --
3 Mechanical Field --
3.1 Navier's Equation --
3.2 Deformation and Displacement Gradient --
3.3 Mechanical Strain --
3.4 Constitutive Equations --
3.4.1 Plane Strain State --
3.4.2 Plane Stress State --
3.4.3 Axisymmetric Stress-Strain Relations --
3.5 Waves in Solid Bodies --
3.6 Material Properties --
3.7 Numerical Computation --
3.7.1 Linear Elasticity --
3.7.2 Damping Model --
3.7.3 Geometric Non-linear Case --
3.7.4 Numerical Example --
3.8 Locking and Effcient Solution Approaches --
3.8.1 Incompatible Modes Method --
3.8.2 Enhanced Assumed Strain Method --
3.8.3 Balanced Reduced and Selective Integration --
4 Electromagnetic Field --
4.1 Maxwell's Equations --
4.2 Quasistatic Electromagnetic Fields --
4.2.1 Magnetic Vector Potential --
4.2.2 Skin Effect --
4.3 Electrostatic Field --
4.4 Material Properties --
4.4.1 Magnetic Permeability --
4.4.2 Electrical Conductivity --
4.4.3 Dielectric Permittivity --
4.5 Electromagnetic Interface Conditions --
4.5.1 Continuity Relations for Magnetic Field --
4.5.2 Continuity Relations for Electric Field --
4.5.3 Continuity Relations for Electric Current Density --
4.6 Numerical Computation: Electrostatics --
4.7 Numerical Computation: Electromagnetics --
4.7.1 Formulation --
4.7.2 Discretization with Edge Elements --
4.7.3 Discretization with Nodal Finite Elements --
4.7.4 Newton's Method for the Non-linear Case --
4.7.5 Approximation of B-H Curve --
4.7.6 Modelling of Current-loaded Coil --
4.7.7 Computation of Global Quantities --
4.7.8 Induced Electric Voltage --
4.8 Numerical Examples --
4.8.1 Ferromagnetic Cube --
4.8.2 Thin Iron Plate --
5 Acoustic Field --
5.1 Wave Theory of Sound --
5.1.1 Conservation of Mass (Continuity Equation) --
5.1.2 Conservation of Momentum (Euler Equation) --
5.1.3 Pressure-Density Relation (State Equation) --
5.1.4 Linear Acoustic Wave Equation --
5.1.5 Acoustic Quantities --
5.1.6 Plane and Spherical Waves --
5.2 Quantitative Measure of Sound --
5.3 Non-linear Acoustic Wave Equation --
5.4 Numerical Computation
Covers both the detailed physical modeling of mechatronic systems and their precise numerical simulation using the Finite Element (FE) method. This book includes a section discussing locking effects as occurring in the numerical computation of thin mechanical structures.
354071359X 9783540713593
2007924154
Microelectromechanical systems.
Mechatronics.
TK7875 / .K35 2007
621 / K.M.N