Ramdan Hours:
Sun - Thu
9.30 AM - 2.30 PM
Iftar in --:--:--
🌙 Maghrib: --:--

Data mining for business intelligence : (Record no. 11828)

MARC details
000 -LEADER
fixed length control field 08064cam a22004094i 4500
001 - CONTROL NUMBER
control field 70673309
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20210316114131.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 060703s2018 ii a b 001 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2006049016
015 ## - NATIONAL BIBLIOGRAPHY NUMBER
National bibliography number GBA678462
Source bnb
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 0470084855 (cloth)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9780470084854 (cloth)
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)70673309
040 ## - CATALOGING SOURCE
Original cataloging agency DLC
Transcribing agency DLC
Modifying agency BAKER
-- UKM
-- C#P
-- YDXCP
-- IXA
-- BTCTA
-- NLGGC
Description conventions rda
050 00 - LIBRARY OF CONGRESS CALL NUMBER
Classification number HF5548.2
Item number .S44843 2007
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 005.54
Edition number 22
Item number S.G.D
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Shmueli, Galit,
Dates associated with a name 1971-,
Relator term author.
245 10 - TITLE STATEMENT
Title Data mining for business intelligence :
Remainder of title concepts, techniques, and applications in Microsoft Office Excel with XLMiner /
Statement of responsibility, etc Galit Shmueli, Nitin R. Patel, Peter C. Bruce
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Hoboken, N.J. :
Name of publisher, distributor, etc Wiley-Interscience,
Date of publication, distribution, etc [2007]
264 #3 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Hoboken, N.J. :
Name of publisher, distributor, etc Wiley-Interscience,
Date of publication, distribution, etc 2018
300 ## - PHYSICAL DESCRIPTION
Extent xviii, 279 pages :
Other physical details illustrations ;
Dimensions 26 cm
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
500 ## - GENERAL NOTE
General note Title page verso: First Printing 2007
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references (pages 271-272) and index
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note PART I PRELIMINARIES<br/><br/>CHAPTER 1 Introduction 3<br/><br/>1.1 What Is Business Analytics? 3<br/><br/>1.2 What Is Data Mining? 5<br/><br/>1.3 Data Mining and Related Terms 5<br/><br/>1.4 Big Data 6<br/><br/>1.5 Data Science 7<br/><br/>1.6 Why Are There So Many Different Methods? 8<br/><br/>1.7 Terminology and Notation 9<br/><br/>1.8 Road Maps to This Book 11<br/><br/>Order of Topics 11<br/>CHAPTER 2 Overview of the Data Mining Process 15<br/><br/>2.1 Introduction 15<br/><br/>2.2 Core Ideas in Data Mining 16<br/><br/>2.3 The Steps in Data Mining 19<br/><br/>2.4 Preliminary Steps 21<br/><br/>2.5 Predictive Power and Overfitting 33<br/><br/>2.6 Building a Predictive Model 38<br/><br/>2.7 Using R for Data Mining on a Local Machine 43<br/><br/>2.8 Automating Data Mining Solutions 43<br/><br/>PART II DATA EXPLORATION AND DIMENSION REDUCTION<br/><br/>CHAPTER 3 Data Visualization 55<br/><br/>3.1 Uses of Data Visualization 55<br/><br/>3.2 Data Examples 57<br/><br/>3.3 Basic Charts: Bar Charts, Line Graphs, and Scatter Plots 59<br/><br/>3.4 Multidimensional Visualization 67<br/><br/>3.5 Specialized Visualizations 80<br/><br/>3.6 Summary: Major Visualizations and Operations, by Data Mining Goal 86<br/><br/>CHAPTER 4 Dimension Reduction 91<br/><br/>4.1 Introduction 91<br/><br/>4.2 Curse of Dimensionality 92<br/><br/>4.3 Practical Considerations 92<br/><br/>4.4 Data Summaries 94<br/><br/>4.5 Correlation Analysis 97<br/><br/>4.6 Reducing the Number of Categories in Categorical Variables 99<br/><br/>4.7 Converting a Categorical Variable to a Numerical Variable 99<br/><br/>4.8 Principal Components Analysis 101<br/><br/>4.9 Dimension Reduction Using Regression Models 111<br/><br/>4.10 Dimension Reduction Using Classification and Regression Trees 111<br/><br/>PART III PERFORMANCE EVALUATION<br/><br/>CHAPTER 5 Evaluating Predictive Performance 117<br/><br/>5.1 Introduction 117<br/><br/>5.2 Evaluating Predictive Performance 118<br/><br/>5.3 Judging Classifier Performance 122<br/><br/>5.4 Judging Ranking Performance 136<br/><br/>5.5 Oversampling 140<br/><br/>PART IV PREDICTION AND CLASSIFICATION METHODS<br/><br/>CHAPTER 6 Multiple Linear Regression 153<br/><br/>6.1 Introduction 153<br/><br/>6.2 Explanatory vs. Predictive Modeling 154<br/><br/>6.3 Estimating the Regression Equation and Prediction 156<br/><br/>6.4 Variable Selection in Linear Regression 161
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note CHAPTER 7 k-Nearest Neighbors (kNN) 173<br/><br/>7.1 The k-NN Classifier (Categorical Outcome) 173<br/><br/>7.2 k-NN for a Numerical Outcome 180<br/><br/>7.3 Advantages and Shortcomings of k-NN Algorithms 182<br/><br/>CHAPTER 8 The Naive Bayes Classifier 187<br/><br/>8.1 Introduction 187<br/><br/>8.2 Applying the Full (Exact) Bayesian Classifier 189<br/><br/>8.3 Advantages and Shortcomings of the Naive Bayes Classifier 199<br/><br/>CHAPTER 9 Classification and Regression Trees 205<br/><br/>9.1 Introduction 205<br/><br/>9.2 Classification Trees 207<br/><br/>9.3 Evaluating the Performance of a Classification Tree 215<br/><br/>9.4 Avoiding Overfitting 216<br/><br/>9.5 Classification Rules from Trees 226<br/><br/>9.6 Classification Trees for More Than Two Classes 227<br/><br/>9.7 Regression Trees 227<br/><br/>9.8 Improving Prediction: Random Forests and Boosted Trees 229<br/><br/>9.9 Advantages and Weaknesses of a Tree 232<br/><br/>CHAPTER 10 Logistic Regression 237<br/><br/>10.1 Introduction 237<br/><br/>10.2 The Logistic Regression Model 239<br/><br/>10.3 Example: Acceptance of Personal Loan 240<br/><br/>10.4 Evaluating Classification Performance 247<br/><br/>10.5 Example of Complete Analysis: Predicting Delayed Flights 250<br/><br/>10.6 Appendix: Logistic Regression for Profiling 259<br/><br/>Appendix A: Why Linear Regression Is Problematic for a Categorical Outcome 259<br/><br/>Appendix B: Evaluating Explanatory Power 261<br/><br/>Appendix C: Logistic Regression for More Than Two Classes 264<br/><br/>CHAPTER 11 Neural Nets 271<br/><br/>11.1 Introduction 271<br/><br/>11.2 Concept and Structure of a Neural Network 272<br/><br/>11.3 Fitting a Network to Data 273<br/><br/>11.4 Required User Input 285<br/><br/>11.5 Exploring the Relationship between Predictors and Outcome 287<br/><br/>11.6 Advantages and Weaknesses of Neural Networks 288<br/><br/>CHAPTER 12 Discriminant Analysis 293<br/><br/>12.1 Introduction 293<br/><br/>12.2 Distance of a Record from a Class 296<br/><br/>12.3 Fisher’s Linear Classification Functions 297<br/><br/>12.4 Classification Performance of Discriminant Analysis 300<br/><br/>12.5 Prior Probabilities 302<br/><br/>12.6 Unequal Misclassification Costs 302<br/><br/>12.7 Classifying More Than Two Classes 303<br/><br/>12.8 Advantages and Weaknesses 306<br/><br/>CHAPTER 13 Combining Methods: Ensembles and Uplift Modeling 311<br/><br/>13.1 Ensembles 311<br/><br/>13.2 Uplift (Persuasion) Modeling 317<br/><br/>13.3 Summary 324<br/><br/>PART V MINING RELATIONSHIPS AMONG RECORDS<br/><br/>CHAPTER 14 Association Rules and Collaborative Filtering 329<br/><br/>14.1 Association Rules 329<br/><br/>14.2 Collaborative Filtering 342<br/><br/>14.3 Summary 351
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note CHAPTER 15 Cluster Analysis 357<br/><br/>15.1 Introduction 357<br/><br/>15.2 Measuring Distance between Two Records 361<br/><br/>15.3 Measuring Distance between Two Clusters 366<br/><br/>15.4 Hierarchical (Agglomerative) Clustering 368<br/><br/>15.5 Non-Hierarchical Clustering: The k-Means Algorithm 376<br/><br/>PART VI FORECASTING TIME SERIES<br/><br/>CHAPTER 16 Handling Time Series 387<br/><br/>16.1 Introduction 387<br/><br/>16.2 Descriptive vs. Predictive Modeling 389<br/><br/>16.3 Popular Forecasting Methods in Business 389<br/><br/>16.4 Time Series Components 390<br/><br/>16.5 Data-Partitioning and Performance Evaluation 395<br/><br/>CHAPTER 17 Regression-Based Forecasting 401<br/><br/>17.1 A Model with Trend 401<br/><br/>17.2 A Model with Seasonality 407<br/><br/>17.3 A Model with Trend and Seasonality 411<br/><br/>17.4 Autocorrelation and ARIMA Models 412<br/><br/>CHAPTER 18 Smoothing Methods 433<br/><br/>18.1 Introduction 433<br/><br/>18.2 Moving Average 434<br/><br/>18.3 Simple Exponential Smoothing 439<br/><br/>18.4 Advanced Exponential Smoothing 442<br/><br/>PART VII DATA ANALYTICS<br/><br/>CHAPTER 19 Social Network Analytics 455<br/><br/>19.1 Introduction 455<br/><br/>19.2 Directed vs. Undirected Networks 457<br/><br/>19.3 Visualizing and Analyzing Networks 458<br/><br/>19.4 Social Data Metrics and Taxonomy 462<br/><br/>19.5 Using Network Metrics in Prediction and Classification 467<br/><br/>19.6 Collecting Social Network Data with R 471<br/><br/>19.7 Advantages and Disadvantages 474<br/><br/>CHAPTER 20 Text Mining 479<br/><br/>20.1 Introduction 479<br/><br/>20.2 The Tabular Representation of Text: Term-Document Matrix and “Bag-of-Words” 480<br/><br/>20.3 Bag-of-Words vs. Meaning Extraction at Document Level 481<br/><br/>20.4 Preprocessing the Text 482<br/><br/>20.5 Implementing Data Mining Methods 489<br/><br/>20.6 Example: Online Discussions on Autos and Electronics 490<br/><br/>20.7 Summary 494<br/><br/>PART VIII CASES<br/><br/>CHAPTER 21 Cases 499<br/><br/>21.1 Charles Book Club 499<br/><br/>21.2 German Credit 505<br/><br/>21.3 Tayko Software Cataloger 510<br/><br/>21.4 Political Persuasion 513<br/><br/>21.5 Taxi Cancellations 517<br/><br/>21.6 Segmenting Consumers of Bath Soap 518<br/><br/>21.7 Direct-Mail Fundraising 521<br/><br/>21.8 Catalog Cross-Selling 524<br/><br/>21.9 Predicting Bankruptcy 525<br/><br/>21.10 Time Series Case: Forecasting Public Transportation Demand 528<br/><br/>Index 535
630 00 - SUBJECT ADDED ENTRY--UNIFORM TITLE
Uniform title Microsoft Excel (Computer file)
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Business
General subdivision Data processing
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Data mining
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Patel, Nitin R.
Fuller form of name (Nitin Ratilal),
Relator term author.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Bruce, Peter C.,
Dates associated with a name 1953-,
Relator term author.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Books
Holdings
Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Acquisition method Total Checkouts Full call number Barcode Date last seen Price effective from Koha item type
  Dewey Decimal Classification     Computers & Information Technology ( Information systems ) Main library Main library A2 10/02/2020 Osiris Bookshop 636.00 Purchase 2020   005.54 S.G.D 00015349 19/02/2025 10/02/2020 Books