Ramdan Hours:
Sun - Thu
9.30 AM - 2.30 PM
Iftar in --:--:--
🌙 Maghrib: --:--

Deep Learning for Engineers/ (Record no. 13508)

MARC details
000 -LEADER
fixed length control field 02155nam a22002537a 4500
003 - CONTROL NUMBER IDENTIFIER
control field EG-NcFUE
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20251126161309.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 251110b ua|||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781032515816
040 ## - CATALOGING SOURCE
Language of cataloging eng
043 ## - GEOGRAPHIC AREA CODE
Geographic area code ua
082 #4 - DEWEY DECIMAL CLASSIFICATION NUMBER
Edition number 23
Classification number 006.31 ATD
100 1# - MAIN ENTRY--PERSONAL NAME
Relator term Author.
Fuller form of name Arif, Tariq M.
245 1# - TITLE STATEMENT
Title Deep Learning for Engineers/
Statement of responsibility, etc Tariq M. Arif and Md. Adilur Rahim.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Boca Raton, FL:
Name of publisher, distributor, etc Chapman & Hall/CRC,
Date of publication, distribution, etc 2024.
300 ## - PHYSICAL DESCRIPTION
Extent xii, 170 pages :
Other physical details color illustrations ;
Dimensions 25 cm.
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
500 ## - GENERAL NOTE
General note Deep Learning for Engineers introduces the fundamental principles of deep learning along with an explanation of the basic elements required for understanding and applying deep learning models.<br/><br/>As a comprehensive guideline for applying deep learning models in practical settings, this book features an easy-to-understand coding structure using Python and PyTorch with an in-depth explanation of four typical deep learning case studies on image classification, object detection, semantic segmentation, and image captioning. The fundamentals of convolutional neural network (CNN) and recurrent neural network (RNN) architectures and their practical implementations in science and engineering are also discussed.<br/><br/>This book includes exercise problems for all case studies focusing on various fine-tuning approaches in deep learning. Science and engineering students at both undergraduate and graduate levels, academic researchers, and industry professionals will find the contents useful.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note Chapter 1 ◾ Introduction<br/>Chapter 2 ◾ Basics of Deep Learning<br/><br/>Chapter 3 ◾ Computer Vision Fundamentals<br/><br/>Chapter 4 ◾ Natural Language Processing Fundamentals<br/><br/>Chapter 5 ◾ Deep Learning Framework Installation: Pytorch and Cuda<br/><br/>Chapter 6 ◾ Case Study I: Image Classification<br/><br/>Chapter 7 ◾ Case Study II: Object Detection<br/><br/>Chapter 8 ◾ Case Study III: Semantic Segmentation<br/><br/>Chapter 9 ◾ Case Study IV: Image Captioning
700 1# - ADDED ENTRY--PERSONAL NAME
Relator term joint author.
Fuller form of name Rahim, Md Adilur.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Books
Holdings
Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Home library Current library Date acquired Source of acquisition Total Checkouts Full call number Barcode Date last seen Copy number Price effective from Koha item type
  Dewey Decimal Classification     Computers & Information Technology ( General ) Main library Main library 10/11/2025 Baccah   006.31 ATD 00017696 10/11/2025 C.1 10/11/2025 Books