Ramdan Hours:
Sun - Thu
9.30 AM - 2.30 PM
Iftar in --:--:--
🌙 Maghrib: --:--
Image from Google Jackets

Data mining and analysis : fundamental concepts and algorithms / Mohammed J. Zaki, Rensselaer Polytechnic Institute, Troy, New York, Wagner Meira, Jr., Universidade Federal de Minas Gerais, Brazil.

By: Contributor(s): Material type: TextTextPublisher: New York, NY : Cambridge University Press, 2014Description: xi, 593 pages : illustrations ; 27 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 9780521766333 (hardback : alk. paper)
Subject(s): DDC classification:
  • 006.312 23 Z.M.D
LOC classification:
  • QA76.9.D343 Z36 2014
Online resources:
Contents:
Data mining and analysis -- Numeric attributes -- Categorical attributes -- Graph data -- Kernel methods -- High-dimensional data -- Dimensionality reduction -- Itemset mining -- Summarizing itemsets -- Sequence mining -- Graph pattern mining -- Pattern and rule assessment -- Representative-based clustering -- Hierarchical clustering -- Density-based clustering -- Spectral and graph clustering -- Clustering validation -- Probabilistic classification -- Decision tree classifier -- Linear discriminant analysis -- Support vector machines -- Classification assessment.
Summary: A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

computer bookfair2016

Includes bibliographical references and index.

Data mining and analysis --
Numeric attributes --
Categorical attributes --
Graph data --
Kernel methods --
High-dimensional data --
Dimensionality reduction --
Itemset mining --
Summarizing itemsets --
Sequence mining --
Graph pattern mining --
Pattern and rule assessment --
Representative-based clustering --
Hierarchical clustering --
Density-based clustering --
Spectral and graph clustering --
Clustering validation --
Probabilistic classification --
Decision tree classifier --
Linear discriminant analysis --
Support vector machines --
Classification assessment.

A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.

There are no comments on this title.

to post a comment.