Ramdan Hours:
Sun - Thu
9.30 AM - 2.30 PM
Iftar in --:--:--
🌙 Maghrib: --:--
Image from Google Jackets

Physics for scientists & engineers, with modern physics / Serway, Raymond A, Jewett, John W.

By: Material type: TextTextPublisher: india : Cengage , c 2017Copyright date: c 2017Edition: ninth editionDescription: 838 pages. : illustrations. ; 27 cmContent type:
  • tex
Media type:
  • rdamedia
Carrier type:
  • rdacarrier
ISBN:
  • 9789386650672
  • 9386650673
Subject(s): DDC classification:
  • 23 530 R.S.P
Contents:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Course reserves
Books Books Main library A8 Faculty of Engineering & Technology (General) 530 R.S.P (Browse shelf(Opens below)) Available 00013441

Physics 3

Machine generated contents note: pt. 1 Mechanics --
1.Physics and Measurement --
1.1.Standards of Length, Mass, and Time --
1.2.Matter and Model Building --
1.3.Dimensional Analysis --
1.4.Conversion of Units --
1.5.Estimates and Order-of-Magnitude Calculations --
1.6.Significant Figures --
2.Motion in One Dimension --
2.1.Position, Velocity, and Speed --
2.2.Instantaneous Velocity and Speed --
2.3.Analysis Model: Particle Under Constant Velocity --
2.4.Acceleration --
2.5.Motion Diagrams --
2.6.Analysis Model: Particle Under Constant Acceleration --
2.7.Freely Falling Objects --
2.8.Kinematic Equations Derived from Calculus --
3.Vectors --
3.1.Coordinate Systems --
3.2.Vector and Scalar Quantities --
3.3.Some Properties of Vectors --
3.4.Components of a Vector and Unit Vectors --
4.Motion in Two Dimensions --
4.1.The Position, Velocity, and Acceleration Vectors --
4.2.Two-Dimensional Motion with Constant Acceleration --
4.3.Projectile Motion --
4.4.Analysis Model: Particle in Uniform Circular Motion --
4.5.Tangential and Radial Acceleration --
4.6.Relative Velocity and Relative Acceleration --
5.The Laws of Motion --
5.1.The Concept of Force --
5.2.Newton's First Law and Inertial Frames --
5.3.Mass --
5.4.Newton's Second Law --
5.5.The Gravitational Force and Weight --
5.6.Newton's Third Law --
5.7.Analysis Models Using Newton's Second Law --
5.8.Forces of Friction --
6.Circular Motion and Other Applications of Newton's Laws --
6.1.Extending the Particle in Uniform Circular Motion Model --
6.2.Nonuniform Circular Motion --
6.3.Motion in Accelerated Frames --
6.4.Motion in the Presence of Resistive Forces --
7.Energy of a System --
7.1.Systems and Environments --
7.2.Work Done by a Constant Force --
7.3.The Scalar Product of Two Vectors --
7.4.Work Done by a Varying Force --
7.5.Kinetic Energy and the Work-Kinetic Energy Theorem --
7.6.Potential Energy of a System --
7.7.Conservative and Nonconservative Forces --
7.8.Relationship Between Conservative Forces and Potential Energy --
7.9.Energy Diagrams and Equilibrium of a System --
8.Conservation of Energy --
8.1.Analysis Model: Nonisolated System (Energy) --
8.2.Analysis Model: Isolated System (Energy) --
8.3.Situations Involving Kinetic Friction --
8.4.Changes in Mechanical Energy for Nonconservative Forces --
8.5.Power --
9.Linear Momentum and Collisions --
9.1.Linear Momentum --
9.2.Analysis Model: Isolated System (Momentum) --
9.3.Analysis Model: Nonisolated System [Momentum] --
9.4.Collisions in One Dimension --
9.5.Collisions in Two Dimensions --
9.6.The Center of Mass --
9.7.Systems of Many Particles --
9.8.Deformable Systems --
9.9.Rocket Propulsion --
10.Rotation of a Rigid Object About a Fixed Axis --
10.1.Angular Position, Velocity, and Acceleration --
10.2.Analysis Model: Rigid Object Under Constant Angular Acceleration --
10.3.Angular and Translations! Quantities --
10.4.Torque --
10.5.Analysis Model: Rigid Object Under a Net Torque --
10.6.Calculation of Moments of Inertia --
10.7.Rotational Kinetic Energy --
10.8.Energy Considerations in Rotational Motion --
10.9.Rolling Motion of a Rigid Object --
11.Angular Momentum --
11.1.The Vector Product and Torque --
11.2.Analysis Model: Nonisolated System (Angular Momentum) --
11.3.Angular Momentum of a Rotating Rigid Object --
11.4.Analysis Model: Isolated System (Angular Momentum) --
11.5.The Motion of Gyroscopes and Tops --
12.Static Equilibrium and Elasticity --
12.1.Analysis Model: Rigid Object in Equilibrium --
12.2.More on the Center of Gravity --
12.3.Examples of Rigid Objects in Static Equilibrium --
12.4.Elastic Properties of Solids --
13.Universal Gravitation --
13.1.Newton's Law of Universal Gravitation --
13.2.Free-Fall Acceleration and the Gravitational Force --
13.3.Analysis Model: Particle in a Field (Gravitational) --
13.4.Kepler's Laws and the Motion of Planets --
13.5.Gravitational Potential Energy --
13.6.Energy Considerations in Planetary and Satellite Motion --
14.Fluid Mechanics --
14.1.Pressure --
14.2.Variation of Pressure with Depth --
14.3.Pressure Measurements --
14.4.Buoyant Forces and Archimedes's Principle --
14.5.Fluid Dynamics --
14.6.Bernoulli's Equation --
14.7.Other Applications of Fluid Dynamics --
pt. 2 Oscillations and Mechanical Waves --
15.Oscillatory Motion --
15.1.Motion of an Object Attached to a Spring --
15.2.Analysis Model: Particle in Simple Harmonic Motion --
15.3.Energy of the Simple Harmonic Oscillator --
15.4.Comparing Simple Harmonic Motion with Uniform Circular Motion --
15.5.The Pendulum --
15.6.Damped Oscillations --
15.7.Forced Oscillations --
16.Wave Motion --
16.1.Propagation of a Disturbance --
16.2.Analysis Model: Traveling Wave --
16.3.The Speed of Waves on Strings --
16.4.Reflection and Transmission --
16.5.Rate of Energy Transfer by Sinusoidal Waves on Strings --
16.6.The Linear Wave Equation --
17.Sound Waves --
17.1.Pressure Variations in Sound Waves --
17.2.Speed of Sound Waves --
17.3.Intensity of Periodic Sound Waves --
17.4.The Doppler Effect --
18.Superposition and Standing Waves --
18.1.Analysis Model: Waves in Interference --
18.2.Standing Waves --
18.3.Analysis Model: Waves Under Boundary Conditions --
18.4.Resonance --
18.5.Standing Waves in Air Columns --
18.6.Standing Waves in Rods and Membranes --
18.7.Beats: Interference in Time --
18.8.Nonsinusoidal Wave Patterns --
pt. 3 Thermodynamics --
19.Temperature --
19.1.Temperature and the Zeroth Law of Thermodynamics --
19.2.Thermometers and the Celsius Temperature Scale --
19.3.The Constant-Volume Gas Thermometer and the Absolute Temperature Scale --
19.4.Thermal Expansion of Solids and Liquids --
19.5.Macroscopic Description of an Ideal Gas --
20.The First Law of Thermodynamics --
20.1.Heat and Internal Energy --
20.2.Specific Heat and Calorimetry --
20.3.Latent Heat --
20.4.Work and Heat in Thermodynamic Processes --
20.5.The First Law of Thermodynamics --
20.6.Some Applications of the First Law of Thermodynamics --
20.7.Energy Transfer Mechanisms in Thermal Processes --
21.The Kinetic Theory of Gases --
21.1.Molecular Mode! of an Ideal Gas --
21.2.Molar Specific Heat of an Ideal Gas --
21.3.The Equipartition of Energy --
21.4.Adiabatic Processes for an Ideal Gas --
21.5.Distribution of Molecular Speeds --
22.Heat Engines, Entropy, and the Second Law of Thermodynamics --
22.1.Heat Engines and the Second Law of Thermodynamics --
22.2.Heat Pumps and Refrigerators --
22.3.Reversible and Irreversible Processes --
22.4.The Carnot Engine --
22.5.Gasoline and Diesel Engines --
22.6.Entropy --
22.7.Changes in Entropy for Thermodynamic Systems --
22.8.Entropy and the Second Law --
pt. 4 Electricity and Magnetism --
23.Electric Fields --
23.1.Properties of Electric Charges --
23.2.Charging Objects by Induction --
23.3.Coulomb's Law --
23.4.Analysis Model: Particle in a Field [Electric] --
23.5.Electric Field of a Continuous Charge Distribution --
23.6.Electric Field Lines --
23.7.Motion of a Charged Particle in a Uniform Electric Field --
24.Gauss's Law --
24.1.Electric Flux --
24.2.Gauss's Law --
24.3.Application of Gauss's Law to Various Charge Distributions --
24.4.Conductors in Electrostatic Equilibrium --
25.Electric Potential --
25.1.Electric Potential and Potential Difference --
25.2.Potential Difference in a Uniform Electric Field --
25.3.Electric Potential and Potential Energy Due to Point Charges --
25.4.Obtaining the Value of the Electric Field from the Electric Potential --
25.5.Electric Potential Due to Continuous Charge Distributions --
25.6.Electric Potential Due to a Charged Conductor --
25.7.The Millikan Oil-Drop Experiment --
25.8.Applications of Electrostatics --
26.Capacitance and Dielectrics --
26.1.Definition of Capacitance --
26.2.Calculating Capacitance --
26.3.Combinations of Capacitors --
26.4.Energy Stored in a Charged Capacitor --
26.5.Capacitors with Dielectrics --
26.6.Electric Dipole in an Electric Field --
26.7.An Atomic Description of Dielectrics --
27.Current and Resistance --
27.1.Electric Current --
27.2.Resistance --
27.3.A Model for Electrical Conduction --
27.4.Resistance and Temperature --
27.5.Superconductors --
27.6.Electrical Power --
28.Direct-Current Circuits --
28.1.Electromotive Force --
28.2.Resistors in Series and Parallel --
28.3.Kirchhoff's Rules --
28.4.RC Circuits --
28.5.Household Wiring and Electrical Safety --
29.Magnetic Fields --
29.1.Analysis Model: Particle in a Field [Magnetic] --
29.2.Motion of a Charged Particle in a Uniform Magnetic Field --
29.3.Applications Involving Charged Particles Moving in a Magnetic Field --
29.4.Magnetic Force Acting on a Current-Carrying Conductor --
29.5.Torque on a Current Loop in a Uniform Magnetic Field --
29.6.The Hall Effect --
30.Sources of the Magnetic Field --
30.1.The Biot-Savart Lam --
30.2.The Magnetic Force Between Two Parallel Conductors --
30.3.Ampere's Law --
30.4.The Magnetic Field of a Solenoid --
30.5.Gauss's Law in Magnetism --
30.6.Magnetism in Matter --
31.Faraday's Law --
31.1.Faraday's Law of Induction --
35.2.Motional emf --
31.3.Lenz's Law --
31.4.Induced emf and Electric Fields --
31.5.Generators and Motors --
31.6.Eddy Currents --
32.Inductance --
32.1.Self-Induction and Inductance --
32.2.Fit Circuits --
32.3.Energy in a Magnetic Field --
32.4.Mutual Inductance --
33.5.Oscillations in an LC Circuit --
32.6.The RC Circuit --
33.Alternating-Current Circuits --
33.1.AC Sources --
33.2.Resistors in an AC Circuit --
33.3.Inductors in an AC Circuit --
33.4.Capacitors in an AC Circuit --
33.5.The RLC Series Circuit --
33.6.Power in an AC Circuit --
33.7.Resonance in a Series RLC Circuit --
33.8.The Transformer and Power Transmission --
33.9.Rectifiers and Filters --
34.Electromagnetic Waves --
34.1.Displacement Current and the General Form of Ampere's Law --
34.2.Maxwell's Equations and Hertz's Discoveries --
34.3.Plane Electromagnetic Waves --
34.4.Energy Carried by Electromagnetic Waves --
34.5.Momentum and Radiation Pressure --
Note continued: 34.6.Production of Electromagnetic Waves by an Antenna --
34.7.The Spectrum of Electromagnetic Waves --
pt. 5 Light and Optics --
35.The Nature of Light and the Principles of Ray Optics --
35.1.The Nature of Light --
35.2.Measurements of the Speed of Light --
35.3.The Ray Approximation in Ray Optics --
35.4.Analysis Model: Wave Under Reflection --
35.5.Analysis Model: Wave Under Refraction --
35.6.Huygens's Principle --
35.7.Dispersion --
35.8.Total Internal Reflection --
36.Image Formation --
36.1.Images Formed by Flat Mirrors --
36.2.Images Formed by Spherical Mirrors --
36.3.Images Formed by Refraction --
36.4.Images Formed by Thin Lenses --
36.5.Lens Aberrations --
36.6.The Camera --
36.7.The Eye --
36.8.The Simple Magnifier --
36.9.The Compound Microscope --
36.10.The Telescope --
37.Wave Optics --
37.1.Young's Double-Slit Experiment --
37.2.Analysis Model: Waves in Interference --
37.3.Intensity Distribution of the Double-Slit Interference Pattern --
37.4.Change of Phase Due to Reflection --
37.5.Interference in Thin Films --
37.6.The Michelson Interferometer --
38.Diffraction Patterns and Polarization --
38.1.Introduction to Diffraction Patterns --
38.2.Diffraction Patterns from Narrow Slits --
38.3.Resolution of Single-Slit and Circular Apertures --
38.4.The Diffraction Grating --
38.5.Diffraction of X-Rays by Crystals --
38.6.Polarization of Light Waves --
pt. 6 Modern Physics --
39.Relativity --
39.1.The Principle of Galilean Relativity --
39.2.The Michelson-Morley Experiment --
39.3.Einstein's Principle of Relativity --
39.4.Consequences of the Special Theory of Relativity --
39.5.The Lorentz Transformation Equations --
39.6.The Lorentz Velocity Transformation Equations --
39.7.Relativistic Linear Momentum --
39.8.Relativistic Energy --
39.9.The General Theory of Relativity --
40.Introduction to Quantum Physics --
40.1.Blackbody Radiation and Planck's Hypothesis --
40.2.The Photoelectric Effect --
40.3.The Compton Effect --
40.4.The Nature of Electromagnetic Waves --
40.5.The Wave Properties of Particles --
40.6.A New Model: The Quantum Particle --
40.7.The Double-Slit Experiment Revisited --
40.8.The Uncertainty Principle --
41.Quantum Mechanics --
41.1.The Wave Function --
41.2.Analysis Model: Quantum Particle Under Boundary Conditions --
41.3.The Schrodinger Equation --
41.4.A Particle in a Well of Finite Height --
41.5.Tunneling Through a Potential Energy Barrier --
41.6.Applications of Tunneling --
41.7.The Simple Harmonic Oscillator --
42.Atomic Physics --
42.1.Atomic Spectra of Gases --
42.2.Early Models of the Atom --
42.3.Bohr's Model of the Hydrogen Atom --
42.4.The Quantum Model of the Hydrogen Atom --
42.5.The Wave Functions for Hydrogen --
42.6.Physical Interpretation of the Quantum Numbers --
42.7.The Exclusion Principle and the Periodic Table --
42.8.More on Atomic Spectra: Visible and X-Ray --
42.9.Spontaneous and Stimulated Transitions --
42.10.Lasers --
43.Molecules and Solids --
43.1.Molecular Bonds --
43.2.Energy States and Spectra of Molecules --
43.3.Bonding in Solids --
43.4.Free-Electron Theory of Metals --
43.5.Band Theory of Solids --
43.6.Electrical Conduction in Metals, Insulators, and Semiconductors --
43.7.Semiconductor Devices --
43.8.Superconductivity --
44.Nuclear Structure --
44.1.Some Properties of Nuclei --
44.2.Nuclear Binding Energy --
44.3.Nuclear Models --
44.4.Radioactivity --
44.5.The Decay Processes --
44.6.Natural Radioactivity --
44.7.Nuclear Reactions --
44.8.Nuclear Magnetic Resonance and Magnetic Resonance Imaging --
45.Applications of Nuclear Physics --
45.1.Interactions Involving Neutrons --
45.2.Nuclear Fission --
45.3.Nuclear Reactors --
45.4.Nuclear Fusion --
45.5.Radiation Damage --
45.6.Uses of Radiation --
46.Particle Physics and Cosmology --
46.1.The Fundamental Forces in Nature --
46.2.Positrons and Other Antiparticles --
46.3.Mesons and the Beginning of Particle Physics --
46.4.Classification of Particles --
46.5.Conservation Laws --
46.6.Strange Particles and Strangeness --
46.7.Finding Patterns in the Particles --
46.8.Quarks --
46.9.Multicolored Quarks --
46.10.The Standard Model --
46.11.The Cosmic Connection --
46.12.Problems and Perspectives --
Appendices --
A.Tables --
A.1.Conversion Factors --
A.2.Symbols, Dimensions, and Units of Physical Quantities --
B.Mathematics Review --
B.1.Scientific Notation --
B.2.Algebra --
B.3.Geometry --
B.4.Trigonometry --
B.5.Series Expansions --
B.6.Differential Calculus --
B.7.Integral Calculus --
B.8.Propagation of Uncertainty --
C.Periodic Table of the Elements --
D.SI Units --
D.1.SI Units --
D.2.Some Derived SI Units.

There are no comments on this title.

to post a comment.