Ramdan Hours:
Sun - Thu
9.30 AM - 2.30 PM
Iftar in --:--:--
🌙 Maghrib: --:--
Image from Google Jackets

Introduction to data science : data analysis and prediction algorithms with R / Rafael A. Irizarry.

By: Material type: TextTextPublisher: [Boca Raton] : [CRC Press], [2019]Description: xxx, 713 pages ; 27 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 9780367357986
Subject(s): Additional physical formats: Online version:: Introduction to data science.DDC classification:
  • 005.362 23 I.R.I
LOC classification:
  • QA276.45.R3 I75 2019
Contents:
Installing R and RStudio -- Getting started with R and RStudio -- R Basics -- Programming basics -- The tidyverse -- Importing data -- Introduction to data visualization -- ggplot2 -- Visualizing data distributions -- Data visualization in practice -- Data visualization principles -- Robust summaries -- Introduction to statistics with R -- Probability -- Random variables -- Statistical inference -- Statistical models -- Regression -- Linear models -- Association is not causation -- Introduction to data wrangling -- Reshaping data -- Joining tables -- Web scraping -- String processing -- Parsing dates and times -- Text mining -- Introduction to machine learning -- Smoothing -- Cross validation -- The caret package -- Examples of algorithms -- Machine learning in practice -- Large datasets -- Clustering -- Introduction to productivty tools -- Accessing the terminal and installing Git -- Organizing with Unix -- Git and GitHub -- Reproducible projects with RStudio and R markdown.
Summary: "The book begins by going over the basics of R and the tidyverse. You learn R throughout the book, but in the first part we go over the building blocks needed to keep learning during the rest of the book"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Installing R and RStudio -- Getting started with R and RStudio -- R Basics -- Programming basics -- The tidyverse -- Importing data -- Introduction to data visualization -- ggplot2 -- Visualizing data distributions -- Data visualization in practice -- Data visualization principles -- Robust summaries -- Introduction to statistics with R -- Probability -- Random variables -- Statistical inference -- Statistical models -- Regression -- Linear models -- Association is not causation -- Introduction to data wrangling -- Reshaping data -- Joining tables -- Web scraping -- String processing -- Parsing dates and times -- Text mining -- Introduction to machine learning -- Smoothing -- Cross validation -- The caret package -- Examples of algorithms -- Machine learning in practice -- Large datasets -- Clustering -- Introduction to productivty tools -- Accessing the terminal and installing Git -- Organizing with Unix -- Git and GitHub -- Reproducible projects with RStudio and R markdown.

"The book begins by going over the basics of R and the tidyverse. You learn R throughout the book, but in the first part we go over the building blocks needed to keep learning during the rest of the book"-- Provided by publisher.

There are no comments on this title.

to post a comment.