Ramdan Hours:
Sun - Thu
9.30 AM - 2.30 PM
Iftar in --:--:--
🌙 Maghrib: --:--
Image from Google Jackets

Laser fundamentals / William T. Silfvast.

By: Material type: TextTextPublisher: Cambridge ; New York : Cambridge University Press, 2004Edition: 2nd edDescription: xxiv, 642 pages : illustrations ; 26 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 0521833450
  • 9780521541053 (pbk.)
Subject(s): DDC classification:
  • 621.366 21 S.W.L
Online resources:
Contents:
1. Introduction; Part I. Fundamental Wave Properties of Light: 2. Wave nature of light - the interacting of light with materials; Part II. Fundamental Quantum Properties of Light: 3. The particle nature of light - discrete energy levels; 4. Radiative transitions and emission linewidth; 5. Energy levels and radiative properties of molecules, liquids (organic dyes) and solids (dielectrics and semiconductors); 6. Radiation and thermal equilibrium - absorption and stimulated emission; Part III. Laser Amplifiers: 7. Conditions for producing a laser - population inversions, gain, and gain saturation; 8. Laser oscillation above threshold; 9. Requirements for obtaining population inversions; 10. Laser pumping requirements and techniques; Part IV. Laser Resonators: 11. Laser resonator modes; 12. Stable laser resonators and Gaussian beams; 13. Special laser cavities; Part V. Specific Laser Systems: 14. Laser systems involving low density gain media; 15. Laser systems involving high density gain media; Part VI. Frequency Multiplication of Laser Beams: 16. Frequency multiplication of lasers and other non linear optical effects.
Summary: 'Laser Fundamentals' provides a clear, up-to-date, and comprehensive introduction to the physical and engineering principles of laser operation and design.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Includes bibliographical references and index.

1. Introduction; Part I. Fundamental Wave Properties of Light: 2. Wave nature of light - the interacting of light with materials; Part II. Fundamental Quantum Properties of Light: 3. The particle nature of light - discrete energy levels; 4. Radiative transitions and emission linewidth; 5. Energy levels and radiative properties of molecules, liquids (organic dyes) and solids (dielectrics and semiconductors); 6. Radiation and thermal equilibrium - absorption and stimulated emission; Part III. Laser Amplifiers: 7. Conditions for producing a laser - population inversions, gain, and gain saturation; 8. Laser oscillation above threshold; 9. Requirements for obtaining population inversions; 10. Laser pumping requirements and techniques; Part IV. Laser Resonators: 11. Laser resonator modes; 12. Stable laser resonators and Gaussian beams; 13. Special laser cavities; Part V. Specific Laser Systems: 14. Laser systems involving low density gain media; 15. Laser systems involving high density gain media; Part VI. Frequency Multiplication of Laser Beams: 16. Frequency multiplication of lasers and other non linear optical effects.

'Laser Fundamentals' provides a clear, up-to-date, and comprehensive introduction to the physical and engineering principles of laser operation and design.

There are no comments on this title.

to post a comment.