Introduction to probability and statistics for engineers and scientists / Sheldon M. Ross.
Material type:
TextAmsterdam ; Boston : Elsevier Academic Press, c2004Edition: 3rd edDescription: xv, 624 p. : ill. ; 24 cm. + 1 computer discContent type: - text
- unmediated
- volume
- 0125980574 (text)
- 0125980590 (CDROM)
- 519.2 22 R.S.I
- TA340 .R67 2004
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|
Books
|
Main library A8 | Faculty of Engineering & Technology (General) | 519.2 R.S.I (Browse shelf(Opens below)) | Available | 00012423 |
Includes index.
engineering bookfair2015
Cover --
Contents --
Preface --
CHAPTER 1 INTRODUCTION TO STATISTICS --
1.1 INTRODUCTION --
1.2 DATA COLLECTION AND DESCRIPTIVE STATISTICS --
1.3 INFERENTIAL STATISTICS AND PROBABILITY MODELS --
1.4 POPULATIONS AND SAMPLES --
1.5 A BRIEF HISTORY OF STATISTICS --
CHAPTER 2 DESCRIPTIVE STATISTICS --
2.1 INTRODUCTION --
2.2 DESCRIBING DATA SETS --
2.2.1 Frequency Tables and Graphs --
2.2.2 Relative Frequency Tables and Graphs --
2.2.3 Grouped Data, Histograms, Ogives, and Stem and Leaf Plots --
2.3 SUMMARIZING DATA SETS --
2.3.1 Sample Mean, Sample Median, and Sample Mode --
2.3.2 Sample Variance and Sample Standard Deviation --
2.3.3 Sample Percentiles and Box Plots --
2.4 CHEBYSHEV'S INEQUALITY --
2.5 NORMAL DATA SETS --
2.6 PAIRED DATA SETS AND THE SAMPLE CORRELATION COEFFICIENT --
CHAPTER 3 ELEMENTS OF PROBABILITY --
3.1 INTRODUCTION --
3.2 SAMPLE SPACE AND EVENTS --
3.3 VENN DIAGRAMS AND THE ALGEBRA OF EVENTS --
3.4 AXIOMS OF PROBABILITY --
3.5 SAMPLE SPACES HAVING EQUALLY LIKELY OUTCOMES --
3.6 CONDITIONAL PROBABILITY --
3.7 BAYES' FORMULA --
3.8 INDEPENDENT EVENTS --
CHAPTER 4 RANDOM VARIABLES AND EXPECTATION --
4.1 RANDOM VARIABLES --
4.2 TYPES OF RANDOM VARIABLES --
4.3 JOINTLY DISTRIBUTED RANDOM VARIABLES --
4.3.1 Independent Random Variables --
*4.3.2 Conditional Distributions --
4.4 EXPECTATION --
4.5 PROPERTIES OF THE EXPECTED VALUE --
4.5.1 Expected Value of Sums of Random Variables --
4.6 VARIANCE --
4.7 COVARIANCE AND VARIANCE OF SUMS OF RANDOM VARIABLES --
4.8 MOMENT GENERATING FUNCTIONS --
4.9 CHEBYSHEV'S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS --
CHAPTER 5 SPECIAL RANDOM VARIABLES --
5.1 THE BERNOULLI AND BINOMIAL RANDOM VARIABLES --
5.1.1 Computing the Binomial Distribution Function --
5.2 THE POISSON RANDOM VARIABLE --
5.2.1 Computing the Poisson Distribution Function --
5.3 THE HYPERGEOMETRIC RANDOM VARIABLE --
5.4 THE UNIFORM RANDOM VARIABLE --
5.5 NORMAL RANDOM VARIABLES --
5.6 EXPONENTIAL RANDOM VARIABLES --
*5.6.1 The Poisson Process --
*5.7 THE GAMMA DISTRIBUTION --
5.8 DISTRIBUTIONS ARISING FROM THE NORMAL --
5.8.1 The Chi-Square Distribution --
5.8.2 The t-Distribution --
5.8.3 The F-Distribution --
*5.9 THE LOGISTICS DISTRIBUTION --
CHAPTER 6 DISTRIBUTIONS OF SAMPLING STATISTICS --
6.1 INTRODUCTION --
6.2 THE SAMPLE MEAN --
6.3 THE CENTRAL LIMIT THEOREM --
6.3.1 Approximate Distribution of the Sample Mean --
6.3.2 How Large a Sample Is Needed? --
6.4 THE SAMPLE VARIANCE --
6.5 SAMPLING DISTRIBUTIONS FROM A NORMAL POPULATION --
6.5.1 Distribution of the Sample Mean --
6.5.2 Joint Distribution of X and S2 --
6.6 SAMPLING FROM A FINITE POPULATION --
CHAPTER 7 PARAMETER ESTIMATION --
7.1 INTRODUCTION --
7.2 MAXIMUM LIKELIHOOD ESTIMATORS --
*7.2.1 Estimating Life Distributions --
7.3 INTERVAL ESTIMATES --
7.3.1 Confidence Interval for a Normal Mean When the Variance is Unknown --
7.3.2 Confidence Intervals for the Variance of a Normal Distribution --
7.4 ESTIMATING THE.
There are no comments on this title.