Ramdan Hours:
Sun - Thu
9.30 AM - 2.30 PM
Iftar in --:--:--
🌙 Maghrib: --:--
Image from Google Jackets

Lectures in mathematical statistics : parts 1 and 2 / Yu. N. Linʹkov ; translated by Oleg Klesov and Vladmir Zayats.

By: Material type: TextTextLanguage: English Original language: Russian Series: Translations of mathematical monographs ; v. 229Publisher: Providence, R.I. : American Mathematical Society, c2005Copyright date: c2005Description: vii, 321 pages : illustrations ; 27 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 082183732X (alk. paper)
Uniform titles:
  • Lekt͡s︡ii po matematicheskoi statistike. English
Subject(s): DDC classification:
  • 519.5 L.Y.L 22
LOC classification:
  • QA276.16 .L5513 2005
Online resources:
Contents:
pt. 1. Samples from one-dimensional distributions -- Empirical distribution function and its asymptotic behavior -- Sample characteristics and their properties -- Order statistics and their properties -- The distributions of some functions of Gaussian random vectors -- Samples from multidimensional distributions -- Empirical distribution function, sampling moments, and their properties -- Sampling regression and its properties -- Estimation of unknown parameters of distributions -- Statistical estimators and their quality measures -- Estimation of a location parameter -- Estimation of a scale parameter -- The Cramér-Rao inequality and efficient estimators -- The Cramér-Rao inequality for a multidimensional parameter -- Integral inequalities of Cramér-Rao type -- Sufficient statistics -- Sufficient statistics and a theorem on factorization -- Sufficient statistics and optimal estimators -- General methods for constructing estimators -- Method of moments -- The maximum likelihood method -- Bayes and minimax methods -- Confidence intervals and regions -- pt. 2. General theory of hypotheses testing -- Testing two simple hypotheses -- Distinguishing a finite number of simple hypotheses -- Distinguishing composite hypotheses -- Asymptotic distinguishability of simple hypotheses -- Statistical hypotheses and tests -- Types of the asymptotic distinguishability of families of hypotheses. The characterization of types -- Complete asymptotic distinguishability under the strong law of large numbers -- Complete asymptotic distinguishability under the weak convergence -- Contiguous families of hypotheses -- Goodness-of-fit tests -- The setting of the problem. Kolmogorov test -- The Pearson test -- Smirnov test -- Other goodness-of-fit tests -- Sequential tests -- Bayes sequential tests of hypotheses -- Wald sequential tests -- The optimality of a sequential Wald test.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode
Books Books Main library A8 Commerce and business administration ( Finance ) 519.5 L.Y.L (Browse shelf(Opens below)) 1 Available 00005338

Includes bibliographical references and index.

pt. 1. Samples from one-dimensional distributions --
Empirical distribution function and its asymptotic behavior --
Sample characteristics and their properties --
Order statistics and their properties --
The distributions of some functions of Gaussian random vectors --
Samples from multidimensional distributions --
Empirical distribution function, sampling moments, and their properties --
Sampling regression and its properties --
Estimation of unknown parameters of distributions --
Statistical estimators and their quality measures --
Estimation of a location parameter --
Estimation of a scale parameter --
The Cramér-Rao inequality and efficient estimators --
The Cramér-Rao inequality for a multidimensional parameter --
Integral inequalities of Cramér-Rao type --
Sufficient statistics --
Sufficient statistics and a theorem on factorization --
Sufficient statistics and optimal estimators --
General methods for constructing estimators --
Method of moments --
The maximum likelihood method --
Bayes and minimax methods --
Confidence intervals and regions --
pt. 2. General theory of hypotheses testing --
Testing two simple hypotheses --
Distinguishing a finite number of simple hypotheses --
Distinguishing composite hypotheses --
Asymptotic distinguishability of simple hypotheses --
Statistical hypotheses and tests --
Types of the asymptotic distinguishability of families of hypotheses. The characterization of types --
Complete asymptotic distinguishability under the strong law of large numbers --
Complete asymptotic distinguishability under the weak convergence --
Contiguous families of hypotheses --
Goodness-of-fit tests --
The setting of the problem. Kolmogorov test --
The Pearson test --
Smirnov test --
Other goodness-of-fit tests --
Sequential tests --
Bayes sequential tests of hypotheses --
Wald sequential tests --
The optimality of a sequential Wald test.

There are no comments on this title.

to post a comment.