Lectures in mathematical statistics : parts 1 and 2 / Yu. N. Linʹkov ; translated by Oleg Klesov and Vladmir Zayats.
Material type:
TextLanguage: English Original language: Russian Series: Translations of mathematical monographs ; v. 229Publisher: Providence, R.I. : American Mathematical Society, c2005Copyright date: c2005Description: vii, 321 pages : illustrations ; 27 cmContent type: - text
- unmediated
- volume
- 082183732X (alk. paper)
- Lekt͡s︡ii po matematicheskoi statistike. English
- 519.5 L.Y.L 22
- QA276.16 .L5513 2005
| Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|---|
Books
|
Main library A8 | Commerce and business administration ( Finance ) | 519.5 L.Y.L (Browse shelf(Opens below)) | 1 | Available | 00005338 |
Includes bibliographical references and index.
pt. 1. Samples from one-dimensional distributions --
Empirical distribution function and its asymptotic behavior --
Sample characteristics and their properties --
Order statistics and their properties --
The distributions of some functions of Gaussian random vectors --
Samples from multidimensional distributions --
Empirical distribution function, sampling moments, and their properties --
Sampling regression and its properties --
Estimation of unknown parameters of distributions --
Statistical estimators and their quality measures --
Estimation of a location parameter --
Estimation of a scale parameter --
The Cramér-Rao inequality and efficient estimators --
The Cramér-Rao inequality for a multidimensional parameter --
Integral inequalities of Cramér-Rao type --
Sufficient statistics --
Sufficient statistics and a theorem on factorization --
Sufficient statistics and optimal estimators --
General methods for constructing estimators --
Method of moments --
The maximum likelihood method --
Bayes and minimax methods --
Confidence intervals and regions --
pt. 2. General theory of hypotheses testing --
Testing two simple hypotheses --
Distinguishing a finite number of simple hypotheses --
Distinguishing composite hypotheses --
Asymptotic distinguishability of simple hypotheses --
Statistical hypotheses and tests --
Types of the asymptotic distinguishability of families of hypotheses. The characterization of types --
Complete asymptotic distinguishability under the strong law of large numbers --
Complete asymptotic distinguishability under the weak convergence --
Contiguous families of hypotheses --
Goodness-of-fit tests --
The setting of the problem. Kolmogorov test --
The Pearson test --
Smirnov test --
Other goodness-of-fit tests --
Sequential tests --
Bayes sequential tests of hypotheses --
Wald sequential tests --
The optimality of a sequential Wald test.
There are no comments on this title.