Essential statistics : exploring the world through data / Robert Gould, University of California, Los Angeles,Colleen Ryan, California Lutheran University, Rebecca Wong, West Valley College
Material type:
TextPublisher: Boston : Pearson, [2017]Edition: second editionDescription: 582 pages : color illustrations ; 28 cmContent type: - text
- unmediated
- volume
- 9781292161228
- 23 519.5 G.R.E
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|
Books
|
Main library A8 | CSDMT | CSCS | CSIS | 519.5 G.R.E (Browse shelf(Opens below)) | Available | 00015277 |
Includes index
Cover --
Title Page --
Copyright Page --
Dedication --
About the Authors --
Contents --
Preface --
Acknowledgments --
Index of Applications --
Chapter 1: Introduction to Data --
Case Study: Deadly Cell Phones? --
1.1. What Are Data? --
1.2. Classifying and Storing Data --
1.3. Organizing Categorical Data --
1.4. Collecting Data to Understand Causality --
Exploring Statistics: Collecting a Table of Different Kinds of Data --
Chapter 2: Picturing Variation with Graphs --
Case Study: Student-to-Teacher Ratio at Colleges --
2.1. Visualizing Variation in Numerical Data 2.2. Summarizing Important Features of a Numerical Distribution --
2.3. Visualizing Variation in Categorical Variables --
2.4. Summarizing Categorical Distributions --
2.5. Interpreting Graphs --
Exploring Statistics: Personal Distance --
Chapter 3: Numerical Summaries of Center and Variation --
Case Study: Living in a Risky World --
3.1. Summaries for Symmetric Distributions --
3.2. What's Unusual? The Empirical Rule and z-Scores --
3.3. Summaries for Skewed Distributions --
3.4. Comparing Measures of Center --
3.5. Using Boxplots for Displaying Summaries Exploring Statistics: Does Reaction Distance Depend on Gender? --
Chapter 4: Regression Analysis: Exploring Associations between Variables --
Case Study: Catching Meter Thieves --
4.1. Visualizing Variability with a Scatterplot --
4.2. Measuring Strength of Association with Correlation --
4.3. Modeling Linear Trends --
4.4. Evaluating the Linear Model --
Exploring Statistics: Guessing the Age of Famous People --
Chapter 5: Modeling Variation with Probability --
Case Study: SIDS or Murder? --
5.1. What Is Randomness? --
5.2. Finding Theoretical Probabilities 5.3. Associations in Categorical Variables --
5.4. Finding Empirical Probabilities --
Exploring Statistics: Let's Make a Deal: Stay or Switch? --
Chapter 6: Modeling Random Events: The Normal and Binomial Models --
Case Study: You Sometimes Get More Than You Pay For --
6.1. Probability Distributions Are Models of Random Experiments --
6.2. The Normal Model --
6.3. The Binomial Model (optional) --
Exploring Statistics: ESP with Coin Flipping --
Chapter 7: Survey Sampling and Inference --
Case Study: Spring Break Fever: Just What the Doctors Ordered? --
7.1. Learning about the World through Surveys 7.2. Measuring the Quality of a Survey --
7.3. The Central Limit Theorem for Sample Proportions --
7.4. Estimating the Population Proportion with Confidence Intervals --
7.5. Comparing Two Population Proportions with Confidence --
Exploring Statistics: Simple Random Sampling Prevents Bias --
Chapter 8: Hypothesis Testing for Population Proportions --
Case Study: Dodging the Question --
8.1. The Essential Ingredients of Hypothesis Testing --
8.2. Hypothesis Testing in Four Steps --
8.3. Hypothesis Tests in Detail --
8.4. Comparing Proportions from Two Populations
There are no comments on this title.