Ramdan Hours:
Sun - Thu
9.30 AM - 2.30 PM
Iftar in --:--:--
🌙 Maghrib: --:--
Image from Google Jackets

Numerical electromagnetics : the FDTD method / Umran S. Inan, Robert A. Marshall.

By: Contributor(s): Material type: TextTextCambridge ; New York : Cambridge University Press, 2011Description: xiv, 390 p. : ill. ; 26 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 9780521190695 (hardback)
  • 052119069X (hardback)
Subject(s): DDC classification:
  • 530.1410113 22 I.U.N
LOC classification:
  • QC760 .I589 2011
Online resources:
Contents:
Machine generated contents note: 1. Introduction; 2. Review of electromagnetic theory; 3. Partial differential equations and physical systems; 4. The FDTD grid and the Yee algorithm; 5. Numerical stability of finite difference methods; 6. Numerical dispersion and dissipation; 7. Introduction of sources; 8. Absorbing boundary conditions; 9. The perfectly matched layer; 10. FDTD modeling in dispersive media; 11. FDTD modeling in anistropic media; 12. Some advanced topics; 13. Unconditionally stable implicit FDTD methods; 14. Finite-difference frequency domain; 15. Finite volume and finite element methods.
Summary: "Beginning with the development of finite difference equations, and leading to the complete FDTD algorithm, this is a coherent introduction to the FDTD method (the method of choice for modeling Maxwell's equations). It provides students and professional engineers with everything they need to know to begin writing FDTD simulations from scratch and to develop a thorough understanding of the inner workings of commercial FDTD software. Stability, numerical dispersion, sources and boundary conditions are all discussed in detail, as are dispersive and anisotropic materials. A comparative introduction of the finite volume and finite element methods is also provided. All concepts are introduced from first principles, so no prior modeling experience is required, and they are made easier to understand through numerous illustrative examples and the inclusion of both intuitive explanations and mathematical derivations"-- Provided by publisher.Summary: "Beginning with the development of Finite Difference Equations, and leading to the complete FDTD algorithm, this is a coherent introduction to the FDTD method (the method of choice for modeling Maxwell's equations). It provides students and professional engineers with everything they need to know to begin writing FDTD simulations from scratch and to develop a thorough understanding of the inner workings of commercial FDTD software. Stability, numerical dispersion, sources, and boundary conditions are all discussed in detail, as are dispersive and anisotropic materials. A comparative introduction of the finite volume and finite element methods is also provided. All concepts are introduced from first principles, so no prior modeling experience is required, and they are made easier to understand through numerous illustrative examples and the inclusion of both intuitive explanations and mathematical derivations"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Books Books Main library A8 Faculty of Engineering & Technology (General) 530.1410113 I.U.N (Browse shelf(Opens below)) Available 00011849

engineering bookfair2015

Includes bibliographical references and index.

Machine generated contents note: 1. Introduction; 2. Review of electromagnetic theory; 3. Partial differential equations and physical systems; 4. The FDTD grid and the Yee algorithm; 5. Numerical stability of finite difference methods; 6. Numerical dispersion and dissipation; 7. Introduction of sources; 8. Absorbing boundary conditions; 9. The perfectly matched layer; 10. FDTD modeling in dispersive media; 11. FDTD modeling in anistropic media; 12. Some advanced topics; 13. Unconditionally stable implicit FDTD methods; 14. Finite-difference frequency domain; 15. Finite volume and finite element methods.

"Beginning with the development of finite difference equations, and leading to the complete FDTD algorithm, this is a coherent introduction to the FDTD method (the method of choice for modeling Maxwell's equations). It provides students and professional engineers with everything they need to know to begin writing FDTD simulations from scratch and to develop a thorough understanding of the inner workings of commercial FDTD software. Stability, numerical dispersion, sources and boundary conditions are all discussed in detail, as are dispersive and anisotropic materials. A comparative introduction of the finite volume and finite element methods is also provided. All concepts are introduced from first principles, so no prior modeling experience is required, and they are made easier to understand through numerous illustrative examples and the inclusion of both intuitive explanations and mathematical derivations"-- Provided by publisher.

"Beginning with the development of Finite Difference Equations, and leading to the complete FDTD algorithm, this is a coherent introduction to the FDTD method (the method of choice for modeling Maxwell's equations). It provides students and professional engineers with everything they need to know to begin writing FDTD simulations from scratch and to develop a thorough understanding of the inner workings of commercial FDTD software. Stability, numerical dispersion, sources, and boundary conditions are all discussed in detail, as are dispersive and anisotropic materials. A comparative introduction of the finite volume and finite element methods is also provided. All concepts are introduced from first principles, so no prior modeling experience is required, and they are made easier to understand through numerous illustrative examples and the inclusion of both intuitive explanations and mathematical derivations"-- Provided by publisher.

There are no comments on this title.

to post a comment.