000 01957cam a22003614a 4500
999 _c7003
_d7003
001 16490354
005 20190509094239.0
008 101005s2011 maua b 001 0 eng
010 _a 2010039827
020 _a9780123748560 (pbk.)
020 _a0123748569 (pbk.)
040 _aDLC
_cDLC
_dYDX
_dBTCTA
_dYDXCP
_dBWX
_dDEBSZ
_dCDX
_dIUL
_dDLC
_erda
050 0 0 _aQA76.9.D343
_bW58 2011
082 0 0 _a006.312
_222
_bW.I.D
100 1 _aWitten, I. H.
_q(Ian H.)
245 1 0 _aData mining :
_bpractical machine learning tools and techniques /
_cIan H. Witten, Eibe Frank, Mark A. Hall.
250 _a3rd ed.
260 _aBurlington, MA :
_bMorgan Kaufmann,
_cc2011.
300 _axxxiii, 629 p. :
_bill. ;
_c24 cm.
336 _2rdacontent
_atext
337 _2rdamedia
_aunmediated
338 _2rdacarrier
_avolume
490 1 _a[Morgan Kaufmann series in data management systems]
504 _aIncludes bibliographical references (p. 587-605) and index.
505 0 _aPart I. Machine Learning Tools and Techniques: 1. What's iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned -- Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond -- Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer -- 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer.
650 0 _aData mining.
700 1 _aFrank, Eibe.
700 1 _aHall, Mark A.
830 0 _aMorgan Kaufmann series in data management systems.
856 _3Abstract
_uhttp://repository.fue.edu.eg/xmlui/handle/123456789/3458
942 _cBK
_2ddc