| 000 | 02995cam a2200493 i 4500 | ||
|---|---|---|---|
| 999 |
_c9391 _d9391 |
||
| 001 | 18198153 | ||
| 003 | OSt | ||
| 005 | 20190724150727.0 | ||
| 008 | 140623t20152015flua b 001 0 eng | ||
| 010 | _a 2014024218 | ||
| 020 | _a9781466595002 (hardcover : alk. paper) | ||
| 020 | _a1466595000 (hardcover : alk. paper) | ||
| 035 | _a(DNLM)101635331 | ||
| 040 |
_aDNLM/DLC _cDLC _erda _dDLC |
||
| 042 | _apcc | ||
| 050 | 0 | 0 |
_aQP623 _b.K67 2015 |
| 060 | 1 | 0 | _aQU 58.7 |
| 082 | 0 | 0 |
_a572.88 _223 _bR |
| 100 | 1 |
_aKorpelainen, Eija, _eauthor. |
|
| 245 | 1 | 0 |
_aRNA-seq data analysis : _ba practical approach / _cEija Korpelainen, Jarno Tuimala, Panu Somervuo, Mikael Huss, Garry Wong. |
| 264 | 1 |
_aBoca Raton : _bCRC Press, Taylor & Francis Group, _c[2015] |
|
| 264 | 4 | _c©2015 | |
| 300 |
_axxiv, 298 pages : _billustrations ; _c24 cm |
||
| 336 |
_atext _2rdacontent |
||
| 337 |
_aunmediated _2rdamedia |
||
| 338 |
_avolume _2rdacarrier |
||
| 490 | 0 | _aChapman & Hall/CRC Mathematical and computational biology series | |
| 500 | _a"A Chapman & Hall book." | ||
| 500 | _apharmacy bookfair2015 | ||
| 504 | _aIncludes bibliographical references and index. | ||
| 505 | 0 | _a Chapter 1. Introduction to RNA-seq -- chapter 2. Introduction to RNA-seq data analysis -- chapter 3. Quality control and preprocessing -- chapter 4. Aligning reads to reference -- chapter 5. Transcriptome assembly -- chapter 6. Quantitation and annotation-based quality control -- chapter 7. RNA-seq analysis framework in R and bioconductor -- chapter 8. Differential expression analysis -- chapter 9. Analysis of differential exon usage -- chapter 10. Annotating the results -- chapter 11. Visualization -- chapter 12. Small noncoding RNAs -- chapter 13. Computational analysis of small noncoding RNA sequencing data. | |
| 520 |
_a"RNA-seq offers unprecedented information about transcriptome, but harnessing this information with bioinformatics tools is typically a bottleneck. This self-contained guide enables researchers to examine differential expression at gene, exon, and transcript level and to discover novel genes, transcripts, and whole transcriptomes. Each chapter starts with theoretical background, followed by descriptions of relevant analysis tools. The book also provides examples using command line tools and the R statistical environment. For non-programming scientists, the same examples are covered using open source software with a graphical user interface"-- _cProvided by publisher. |
||
| 650 | 1 | 2 |
_aSequence Analysis, RNA _xmethods. |
| 650 | 1 | 2 | _aTranscriptome. |
| 650 | 2 | 2 | _aStatistics as Topic. |
| 700 | 1 |
_aTuimala, Jarno _eauthor. _933453 |
|
| 700 | 1 |
_aSomervuo, Panu, _eauthor. |
|
| 700 | 1 |
_aHuss, Mikael, _eauthor. |
|
| 700 | 1 |
_aWong, Garry, _eauthor. |
|
| 856 |
_3Abstract _uhttp://repository.fue.edu.eg/xmlui/handle/123456789/2859 |
||
| 906 |
_a7 _bcbc _corignew _d1 _eecip _f20 _gy-gencatlg |
||
| 942 |
_2ddc _cBK |
||