000 02995cam a2200493 i 4500
999 _c9391
_d9391
001 18198153
003 OSt
005 20190724150727.0
008 140623t20152015flua b 001 0 eng
010 _a 2014024218
020 _a9781466595002 (hardcover : alk. paper)
020 _a1466595000 (hardcover : alk. paper)
035 _a(DNLM)101635331
040 _aDNLM/DLC
_cDLC
_erda
_dDLC
042 _apcc
050 0 0 _aQP623
_b.K67 2015
060 1 0 _aQU 58.7
082 0 0 _a572.88
_223
_bR
100 1 _aKorpelainen, Eija,
_eauthor.
245 1 0 _aRNA-seq data analysis :
_ba practical approach /
_cEija Korpelainen, Jarno Tuimala, Panu Somervuo, Mikael Huss, Garry Wong.
264 1 _aBoca Raton :
_bCRC Press, Taylor & Francis Group,
_c[2015]
264 4 _c©2015
300 _axxiv, 298 pages :
_billustrations ;
_c24 cm
336 _atext
_2rdacontent
337 _aunmediated
_2rdamedia
338 _avolume
_2rdacarrier
490 0 _aChapman & Hall/CRC Mathematical and computational biology series
500 _a"A Chapman & Hall book."
500 _apharmacy bookfair2015
504 _aIncludes bibliographical references and index.
505 0 _a Chapter 1. Introduction to RNA-seq -- chapter 2. Introduction to RNA-seq data analysis -- chapter 3. Quality control and preprocessing -- chapter 4. Aligning reads to reference -- chapter 5. Transcriptome assembly -- chapter 6. Quantitation and annotation-based quality control -- chapter 7. RNA-seq analysis framework in R and bioconductor -- chapter 8. Differential expression analysis -- chapter 9. Analysis of differential exon usage -- chapter 10. Annotating the results -- chapter 11. Visualization -- chapter 12. Small noncoding RNAs -- chapter 13. Computational analysis of small noncoding RNA sequencing data.
520 _a"RNA-seq offers unprecedented information about transcriptome, but harnessing this information with bioinformatics tools is typically a bottleneck. This self-contained guide enables researchers to examine differential expression at gene, exon, and transcript level and to discover novel genes, transcripts, and whole transcriptomes. Each chapter starts with theoretical background, followed by descriptions of relevant analysis tools. The book also provides examples using command line tools and the R statistical environment. For non-programming scientists, the same examples are covered using open source software with a graphical user interface"--
_cProvided by publisher.
650 1 2 _aSequence Analysis, RNA
_xmethods.
650 1 2 _aTranscriptome.
650 2 2 _aStatistics as Topic.
700 1 _aTuimala, Jarno
_eauthor.
_933453
700 1 _aSomervuo, Panu,
_eauthor.
700 1 _aHuss, Mikael,
_eauthor.
700 1 _aWong, Garry,
_eauthor.
856 _3Abstract
_uhttp://repository.fue.edu.eg/xmlui/handle/123456789/2859
906 _a7
_bcbc
_corignew
_d1
_eecip
_f20
_gy-gencatlg
942 _2ddc
_cBK