000 02966cam a2200433 a 4500
999 _c9498
_d9498
001 15462082
005 20190509132542.0
008 080923s2009 enka b 001 0 eng
010 _a 2008042115
020 _a9780198570776
020 _a0198570775
035 _a(OCoLC)ocn259716034
035 _a(OCoLC)259716034
040 _aDLC
_cDLC
_dBWKUK
_dBWK
_dBWX
_dYDXCP
_dCDX
_dDLC
_erda
050 0 0 _aQC20.7.S8
_bF54 2009
082 0 0 _a530.141
_222
_bF.T.E
100 1 _aField, Timothy R.
245 1 0 _aElectromagnetic scattering from random media /
_cTimothy R. Field.
260 _aOxford ;
_aNew York :
_bOxford University Press,
_c2009.
264 _aOxford ;
_aNew York :
_bOxford University Press,
_c2009.
300 _axiii, 184 p. :
_bill. ;
_c25 cm.
336 _2rdacontent
_atext
337 _2rdamedia
_aunmediated
338 _2rdacarrier
_avolume
490 1 _aInternational series of monographs on physics ;
_v144
500 _aengineering bookfair2015
504 _aIncludes bibliographical references (p. 174-180) and index.
505 0 _aPART I: STOCHASTIC CALCULUS ; 1. Heat equation and Brownian motion ; 2. Ito calculus ; 3. Stochastic differential geometry ; 4. Examples of stochastic differential equations ; PART II: SCATTERING DYNAMICS ; 5. Diffusion models in electromagnetic scattering ; 6. Rayleigh scattering ; 7. Population dynamics ; 8. Dynamics of K-scattering ; 9. Models of weak scattering ; 10. Scattering from general populations ; PART III: SIMULATION AND EXPERIMENT ; 11. Simulation of K-scattering ; 12. Experimental tests ; 13. Non-linear dynamics of sea clutter ; 14. Observability of scattering cross-section ; APPENDICES ; A. Stability and infinite divisibility ; B. Ito versus Stratonovich stochastic integrals ; C. Filtrations, conditional probability and Markov property ; D. Girsanov's theorem ; E. Partition function solution to BDI model ; F. Summary of K-scattering ; G. Iterative solution for vector processes ; H. Open problems ; I. Suggested further reading ; References ; Index
520 _aThe book develops the dynamical theory of scattering from random media from first principles. Its key findings are to characterize the time evolution of the scattered field in terms of stochastic differential equations, and to illustrate this framework in simulation and experimental data analysis.
650 0 _aStochastic processes.
650 0 _aRandom fields.
650 0 _aMathematical physics.
650 0 _aElectromagnetic waves
_xScattering.
830 0 _aInternational series of monographs on physics (Oxford, England) ;
_v144.
856 _3Abstract
_uhttp://repository.fue.edu.eg/xmlui/handle/123456789/2872
906 _a7
_bcbc
_corignew
_d1
_eecip
_f20
_gy-gencatlg
942 _2ddc
_cBK