Ramdan Hours:
Sun - Thu
9.30 AM - 2.30 PM
Iftar in --:--:--
🌙 Maghrib: --:--
Image from Google Jackets

Antennas and propagation for wireless communication systems / Simon R. Saunders, Alejandro Aragón-Zavala.

By: Contributor(s): Material type: TextTextPublisher: New Delhi : J. Wiley & Sons, [2007]Edition: 2nd editionDescription: xxii, 524 pages : illustrations ; 25 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 9788126518333
Subject(s): DDC classification:
  • 621.3824 22 S.S.A
Online resources:
Contents:
Preface to the Second Edition xix Preface to the First Edition 1. Introduction: The Wireless Communication Channel 1 1.1 INTRODUCTION 1 1.2 CONCEPT OF A WIRELESS CHANNEL 2 1.3 THE ELECTROMAGNETIC SPECTRUM 4 1.4 HISTORY 5 1.5 SYSTEM TYPES 7 1.6 AIMS OF CELLULAR SYSTEMS 8 1.7 CELLULAR NETWORKS 9 1.8 THE CELLULAR CONCEPT 9 1.9 TRAFFIC 13 1.10 MULTIPLE ACCESS SCHEMES AND DUPLEXING 17 1.10.1 Frequency Division Multiple Access 17 1.10.2 Time Division Multiple Access 18 1.10.3 Code Division Multiple Access 18 1.11 AVAILABLE DATA RATES 19 1.12 STRUCTURE OF THIS BOOK 20 1.13 CONCLUSION 22 REFERENCES 22 PROBLEMS 23 2. Properties of Electromagnetic Waves 25 2.1 INTRODUCTION 25 2.2 MAXWELL?S EQUATIONS 25 2.3 PLANE WAVE PROPERTIES 26 2.3.1 FIELD RELATIONSHIPS 27 2.3.2 WAVE IMPEDANCE 27 Q1 2.3.3 Poynting Vector 28 2.3.4 Phase Velocity 28 2.3.5 Lossy Media 28 2.4 POLARISATION 32 2.4.1 Polarisation States 32 2.4.2 Mathematical Representation of Polarisation 32 2.4.3 Random Polarisation 33 2.5 CONCLUSION 34 REFERENCES 34 PROBLEMS 34 3. Propagation Mechanisms 37 3.1 INTRODUCTION 37 3.2 REFLECTION, REFRACTION AND TRANSMISSION 37 3.2.1 Lossless Media 37 3.2.2 Lossy Media 41 3.2.3 Typical Reflection and Transmission Coefficients 42 3.3 ROUGH SURFACE SCATTERING 45 3.4 GEOMETRICAL OPTICS 47 3.4.1 Principles 47 3.4.2 Formulation 49 3.5 DIFFRACTION 50 3.5.1 Principle 50 3.5.2 Single Knife-Edge Diffraction 51 3.5.3 Other Diffracting Obstacles: Geometrical Theory of Diffraction 54 3.6 CONCLUSION 59 REFERENCES 59 PROBLEMS 59 4. Antenna Fundamentals 61 4.1 INTRODUCTION 61 4.2 PRINCIPLES 61 4.2.1 What is an Antenna? 61 4.2.2 Necessary Conditions for Radiation 62 4.2.3 Near-Field and Far-Field Regions 62 4.2.4 Far-Field Radiation from Wires 63 4.3 ANTENNA PARAMETERS 65 4.3.1 Radiation Pattern 65 4.3.2 Directivity 67 4.3.3 Radiation Resistance and Efficiency 67 4.3.4 Power Gain 68 4.3.5 Bandwidth 70 4.3.6 Reciprocity 70 4.3.7 Receiving Antenna Aperture 71 4.3.8 Beamwidth and Directivity 71 4.3.9 The Friis Formula: Antennas in Free Space 71 4.3.10 Polarisation Matching 72 viii Contents 4.4 PRACTICAL DIPOLES 73 4.4.1 Dipole Structure 73 4.4.2 Current Distribution 74 4.4.3 Radiation Pattern 74 4.4.4 Input Impedance 77 4.5 ANTENNA ARRAYS 77 4.5.1 Introduction 77 4.5.2 Linear and Planar Arrays 77 4.5.3 The Uniform Linear Array 77 4.5.4 Parasitic Elements: Uda?Yagi Antennas 78 4.5.5 Reflector Antennas 79 4.5.6 Monopole Antennas 80 4.5.7 Corner Reflectors 80 4.5.8 Parabolic Reflector Antennas 81 4.6 HORN ANTENNAS 82 4.7 LOOP ANTENNAS 83 4.8 HELICAL ANTENNAS 83 4.9 PATCH ANTENNAS 84 4.10 CONCLUSION 85 REFERENCES 85 PROBLEMS 86 5. Basic Propagation Models 89 5.1 INTRODUCTION 89 5.2 DEFINITION OF PATH LOSS 89 5.3 A BRIEF NOTE ON DECIBELS 92 5.4 NOISE MODELLING 93 5.5 FREE SPACE LOSS 97 5.6 PLANE EARTH LOSS 98 5.7 LINK BUDGETS 101 5.8 CONCLUSION 103 REFERENCE 103 PROBLEMS 103 6. Terrestrial Fixed Links 105 6.1 INTRODUCTION 105 6.2 PATH PROFILES 105 6.3 TROPOSPHERIC REFRACTION 108 6.3.1 Fundamentals 108 6.3.2 Time Variability 111 6.3.3 Ducting and Multipath 111 6.4 OBSTRUCTION LOSS 113 6.5 APPROXIMATE MULTIPLE KNIFE-EDGE DIFFRACTION 115 6.5.1 The Deygout Method 115 6.5.2 The Causebrook Correction 116 6.5.3 The Giovanelli Method 117 Contents ix 6.5.4 Test Cases 117 6.6 THE MULTIPLE-EDGE DIFFRACTION INTEGRAL 121 6.6.1 Slope-UTD Multiple-Edge Diffraction Model 122 6.6.2 Test Case: Comparison of Multiple Models 126 6.7 DIFFRACTION OVER OBJECTS OF FINITE SIZE 127 6.8 OTHER METHODS FOR PREDICTING TERRAIN DIFFRACTION 129 6.8.1 The Integral Equation Model 129 6.8.2 The Parabolic Equation Method 131 6.9 INFLUENCE OF CLUTTER 134 6.10 CONCLUSION 135 REFERENCES 135 PROBLEMS 137 7. Satellite Fixed Links 139 7.1 INTRODUCTION 139 7.2 TROPOSPHERIC EFFECTS 140 7.2.1 Attenuation 140 7.2.2 Rain Attenuation 141 7.2.3 Gaseous Absorption 146 7.2.4 Tropospheric Refraction 148 7.2.5 Tropospheric Scintillation 148 7.2.6 Depolarisation 151 7.2.7 Sky Noise 153 7.3 IONOSPHERIC EFFECTS 155 7.3.1 Faraday Rotation 158 7.3.2 Group Delay 159 7.3.3 Dispersion 159 7.3.4 Ionospheric Scintillation 160 7.3.5 Summary of Ionospheric Effects 160 7.4 SATELLITE EARTH STATION ANTENNAS 160 7.5 CONCLUSION 161 REFERENCES 161 PROBLEMS 162 8. Macrocells 163 8.1 INTRODUCTION 163 8.2 DEFINITION OF PARAMETERS 163 8.3 EMPIRICAL PATH LOSS MODELS 164 8.3.1 Clutter Factor Models 165 8.3.2 The Okumura?Hata Model 167 8.3.3 The Cost 231?Hata Model 169 8.3.4 The Lee Model 169 8.3.5 The Ibrahim and Parsons Model 170 8.3.6 Environment Categories 171 8.4 PHYSICAL MODELS 172 8.4.1 The Allsebrook and Parsons Model 172 x Contents 8.4.2 The Ikegami Model 173 8.4.3 Rooftop Diffraction 174 8.4.4 The Flat Edge Model 175 8.4.5 The Walfisch?Bertoni Model 178 8.4.6 Cost 231/Walfisch?Ikegami Model 180 8.5 ITU-R MODELS 181 8.5.1 ITU-R Recommendation P.1411 181 8.5.2 ITU-R Recommendation P.1546 182 8.6 COMPARISON OF MODELS 182 8.7 COMPUTERISED PLANNING TOOLS 183 8.8 CONCLUSION 183 REFERENCES 183 PROBLEMS 185 9. Shadowing 187 9.1 INTRODUCTION 187 9.2 STATISTICAL CHARACTERISATION 187 9.3 PHYSICAL BASIS FOR SHADOWING 189 9.4 IMPACT ON COVERAGE 189 9.4.1 Edge of Cell 189 9.4.2 Whole Cell 192 9.5 LOCATION VARIABILITY 195 9.6 CORRELATED SHADOWING 196 9.6.1 Serial Correlation 197 9.6.2 Site-to-Site Correlation 199 9.7 CONCLUSION 205 REFERENCES 205 PROBLEMS 206 10. Narrowband Fast Fading 209 10.1 INTRODUCTION 209 10.2 BASEBAND CHANNEL REPRESENTATION 209 10.3 THE AWGN CHANNEL 210 10.4 THE NARROWBAND FADING CHANNEL 213 10.5 WHEN DOES FADING OCCUR IN PRACTICE? 214 10.6 THE RAYLEIGH DISTRIBUTION 215 10.7 DISTRIBUTION OF THE SNR FOR A RAYLEIGH CHANNEL 218 10.8 THE RICE DISTRIBUTION 221 10.9 THE NAKAGAMI- m DISTRIBUTION 226 10.10 OTHER FADING DISTRIBUTIONS 227 10.11 SECOND-ORDER FAST-FADING STATISTICS 227 10.11.1 The Doppler Effect 228 10.11.2 The Classical Doppler Spectrum 230 10.12 AUTOCORRELATION FUNCTION 236 10.13 NARROWBAND MOBILE RADIO CHANNEL SIMULATIONS 238 10.14 CONCLUSION 239 Contents xi REFERENCES 239 PROBLEMS 240 11. Wideband Fast Fading 241 11.1 INTRODUCTION 241 11.2 EFFECT OF WIDEBAND FADING 242 11.3 WIDEBAND CHANNEL MODEL 245 11.4 WIDEBAND CHANNEL PARAMETERS 246 11.5 FREQUENCY DOMAIN EFFECTS 251 11.6 THE BELLO FUNCTIONS 252 11.7 WIDEBAND FADING IN FIXED LINKS 253 11.8 OVERCOMING WIDEBAND CHANNEL IMPAIRMENTS 254 11.9 CONCLUSION 254 REFERENCES 255 PROBLEMS 255 12. Microcells 257 12.1 INTRODUCTION 257 12.2 EMPIRICAL MODELS 257 12.2.1 Dual-Slope Model 257 12.2.2 The Lee Microcell Model 259 12.2.3 The Har?Xia-Bertoni Model 260 12.3 PHYSICAL MODELS 262 12.4 LINE-OF-SIGHT MODELS 264 12.4.1 Two-Ray Model 264 12.4.2 Street Canyon Models 265 12.4.3 ITU-R P.1411 Street Canyon Model 267 12.4.4 Random Waveguide Model 268 12.5 NON-LINE-OF-SIGHT MODELS 270 12.5.1 Propagation Mechanisms and Cell Planning Considerations 270 12.5.2 Recursive Model 273 12.5.3 ITU-R P.1411 Non-Line-of-Sight Model 274 12.5.4 Site-Specific Ray Models 275 12.6 DISCUSSION 276 12.7 MICROCELL SHADOWING 277 12.8 NARROWBAND FADING 277 12.9 WIDEBAND EFFECTS 277 12.10 CONCLUSION 278 REFERENCES 279 PROBLEMS 280 13. Picocells 283 13.1 INTRODUCTION 283 13.2 EMPIRICAL MODELS OF PROPAGATION WITHIN BUILDINGS 283 13.2.1 Wall and Floor Factor Models 283 xii Contents 13.2.2 COST231 Multi-Wall Model 285 13.2.3 Ericsson Model 286 13.2.4 Empirical Models for Wireless Lan 286 13.2.5 Measurement-Based Prediction 288 13.3 PHYSICAL MODELS OF INDOOR PROPAGATION WITHIN BUILDINGS 288 13.3.1 Ray-Tracing Models for Picocells 289 13.3.2 Reduced-Complexity UTD Indoor Model 289 13.3.3 Propagation Between Floors 291 13.3.4 Propagation on Single Floors 292 13.4 MODELS OF PROPAGATION INTO BUILDINGS 293 13.4.1 Introduction 293 13.4.2 Measured Behaviour 294 13.4.3 COST231 Line-of-Sight Model 294 13.4.4 Floor Gain Models 295 13.4.5 COST231 Non-line-of-Sight Model 296 13.4.6 Propagation Mechanisms 297 13.5 CONSTITUTIVE PARAMETERS OF BUILDING MATERIALS FOR PHYSICAL MODELS 299 13.6 SHADOWING 300 13.7 MULTIPATH EFFECTS 300 13.8 ULTRA-WIDEBAND INDOOR PROPAGATION 302 13.9 PROPAGATION IN TUNNELS AND OTHER ENCLOSED SPACES 303 13.9.1 Measured Behaviour 303 13.9.2 Models of Tunnel Propagation 305 13.10 DISCUSSION 309 13.11 DISTRIBUTION SYSTEMS FOR INDOOR AND ENCLOSED SPACE APPLICATIONS 309 13.11.1 Distributed Antenna Systems ? General Considerations 310 13.11.2 Passive Distributed Antenna Systems 310 13.11.3 Active Distributed Antenna Systems 311 13.11.4 Hybrid Systems 314 13.11.5 Radiating Cables 314 13.11.6 Repeaters 319 13.11.7 Digital Distribution 320 13.11.8 Selecting The Most Appropriate Distribution System 321 13.12 INDOOR LINK BUDGETS 321 13.13 CONCLUSION 326 REFERENCES 326 PROBLEMS 328 14. Megacells 331 14.1 INTRODUCTION 331 14.2 SHADOWING AND FAST FADING 332 14.2.1 Introduction 332 Contents xiii 14.2.2 Local Shadowing Effects 333 14.2.3 Local Multipath Effects 334 14.3 EMPIRICAL NARROWBAND MODELS 336 14.4 STATISTICAL MODELS 337 14.4.1 Loo Model 339 14.4.2 Corazza Model 341 14.4.3 Lutz Model 341 14.5 SHADOWING STATISTICS 345 14.6 PHYSICAL-STATISTICAL MODELS FOR BUILT-UP AREAS 345 14.6.1 Building Height Distribution 348 14.6.2 Time-Share of Shadowing 349 14.6.3 Time Series Model 350 14.7 WIDEBAND MODELS 353 14.8 MULTI-SATELLITE CORRELATIONS 354 14.9 OVERALL MOBILE SATELLITE CHANNEL MODEL 356 14.10 CONCLUSION 357 REFERENCES 357 PROBLEMS 359 15. Antennas for Mobile Systems 361 15.1 INTRODUCTION 361 15.2 MOBILE TERMINAL ANTENNAS 361 15.2.1 Performance Requirements 361 15.2.2 Small Antenna Fundamentals 362 15.2.3 Dipoles 364 15.2.4 Helical Antennas 366 15.2.5 Inverted-F Antennas 366 15.2.6 Patches 368 15.2.7 Mean Effective Gain (MEG) 368 15.2.8 Human Body Interactions and Specific Absorption Rate (SAR) 370 15.2.9 Mobile Satellite Antennas 374 15.3 BASE STATION ANTENNAS 376 15.3.1 Performance Requirements in Macrocells 376 15.3.2 Macrocell Antenna Design 377 15.3.3 Macrocell Antenna Diversity 380 15.3.4 Microcell Antennas 381 15.3.5 Picocell Antennas 382 15.3.6 Antennas for Wireless Lan 385 15.4 CONCLUSION 386 REFERENCES 386 PROBLEMS 388 16. Overcoming Narrowband Fading via Diversity 391 16.1 INTRODUCTION 391 16.2 CRITERIA FOR USEFUL BRANCHES 392 xiv Contents 16.3 SPACE DIVERSITY 393 16.3.1 General Model 393 16.3.2 Mobile Station Space Diversity 395 16.3.3 Handset Diversity Antennas 397 16.3.4 Base Station Space Diversity 397 16.4 POLARISATION DIVERSITY 399 16.4.1 Base Station Polarisation Diversity 399 16.4.2 Mobile Station Polarisation Diversity 400 16.5 TIME DIVERSITY 402 16.6 FREQUENCY DIVERSITY 403 16.7 COMBINING METHODS 403 16.7.1 Selection Combining 403 16.7.2 Switched Combining 405 16.7.3 Equal-Gain Combining 406 16.7.4 Maximum Ratio Combining 407 16.7.5 Comparison of Combining Methods 408 16.8 DIVERSITY FOR MICROWAVE LINKS 409 16.9 MACRODIVERSITY 410 16.10 TRANSMIT DIVERSITY 410 16.11 CONCLUSION 411 REFERENCES 411 PROBLEMS 412 17. Overcoming Wideband Fading 413 17.1 INTRODUCTION 413 17.2 SYSTEM MODELLING 413 17.2.1 Continuous-Time System Model 413 17.2.2 Discrete-Time System Model 414 17.2.3 First Nyquist Criterion 415 17.3 LINEAR EQUALISERS 416 17.3.1 Linear Equaliser Structure 416 17.3.2 Zero-Forcing Equaliser 417 17.3.3 Least Mean Square Equaliser 418 17.4 ADAPTIVE EQUALISERS 419 17.4.1 Direct Matrix Inversion 420 17.4.2 LMS Algorithm 421 17.4.3 Other Convergence Algorithms 421 17.5 NON-LINEAR EQUALISERS 422 17.5.1 Decision Feedback 423 17.5.2 Maximum Likelihood Sequence Estimator 423 17.5.3 Viterbi Equalisation 424 17.6 RAKE RECEIVERS 427 17.7 OFDM RECEIVERS 430 17.8 CONCLUSION 435 REFERENCES 435 PROBLEMS 436 Contents xv 18. Adaptive Antennas 437 18.1 INTRODUCTION 437 18.2 BASIC CONCEPTS 437 18.3 ADAPTIVE ANTENNA APPLICATIONS 438 18.3.1 Example of Adaptive Antenna Processing 438 18.3.2 Spatial Filtering for Interference Reduction 440 18.3.3 Space Division Multiple Access 441 18.3.4 Multiple-Input Multiple-Output Systems 441 18.4 OPTIMUM COMBINING 443 18.4.1 Formulation 443 18.4.2 Steering Vector for Uniform Linear Array 445 18.4.3 Steering Vector for Arbitrary Element Positions 446 18.4.4 Optimum Combiner in a Free Space Environment 447 18.4.5 Optimum Combiner in a Fading Environment 449 18.4.6 Implementation of Adaptive Antennas 450 18.4.7 Adaptive Antenna Channel Parameters 450 18.5 MULTIPLE-INPUT MULTIPLE-OUTPUT SYSTEMS 453 18.5.1 MIMO Signal Model 453 18.5.2 MIMO Channel Capacity 455 18.5.3 Trade-Off Between Diversity and Capacity for MIMO 458 18.5.4 Particular STC Schemes 459 18.5.5 MIMO Channel Modelling 460 18.5.6 MIMO Channel Models for Specific Systems 462 18.5.7 Impact of Antennas on MIMO Performance 464 18.6 ADAPTIVE ANTENNAS IN A PRACTICAL SYSTEM 465 18.7 CONCLUSION 466 REFERENCES 466 PROBLEMS 468 19. Channel Measurements for Mobile Systems 469 19.1 INTRODUCTION 469 19.2 APPLICATIONS FOR CHANNEL MEASUREMENTS 469 19.2.1 Tuning Empirical Path Loss Models 469 19.2.2 Creating Synthetic Channel Models 470 19.2.3 Existing Coverage 471 19.2.4 Design Survey 471 19.3 IMPACT OF MEASUREMENT INACCURACIES 471 19.4 SIGNAL SAMPLING ISSUES 473 19.4.1 Estimators of the Local Mean 473 19.4.2 Sampling Rate 476 19.5 MEASUREMENT SYSTEMS 479 19.5.1 Narrowband Channel Sounding 479 19.5.2 Wideband Channel Measurement Techniques 480 19.5.3 Other Measurements 481 19.6 EQUIPMENT CALIBRATION AND VALIDATION 481 19.6.1 General 481 19.6.2 Transmitters 482 xvi Contents 19.6.3 Receivers 482 19.6.4 Passive Elements 483 19.7 OUTDOOR MEASUREMENTS 484 19.7.1 General 484 19.7.2 Measurement Campaign Plan 484 19.7.3 Navigation 484 19.7.4 Size and Shape of Area for Averaging 486 19.7.5 Outdoor Testing Guidelines 488 19.8 INDOOR MEASUREMENTS 488 19.8.1 General 488 19.8.2 Navigation 489 19.8.3 Selection of Walk Routes 490 19.8.4 Equipment 491 19.8.5 Documentation 493 19.9 CONCLUSION 493 REFERENCES 493 PROBLEMS 494 20. Future Developments in the Wireless Communication Channel 497 20.1 INTRODUCTION 497 20.2 HIGH-RESOLUTION DATA 497 20.3 ANALYTICAL FORMULATIONS 498 20.4 PHYSICAL-STATISTICAL CHANNEL MODELLING 498 20.5 MULTIDIMENSIONAL CHANNEL MODELS 498 20.6 REAL-TIME CHANNEL PREDICTIONS 498 20.7 INTELLIGENT ANTENNAS 499 20.8 DISTRIBUTED AND AD-HOC CELL ARCHITECTURES 499 20.9 CONCLUSION 500 REFERENCES 500 Appendix A Statistics, Probability and Stochastic Processes 501 A.1 INTRODUCTION 501 A.2 SINGLE RANDOM VARIABLES 501 A.3 MULTIPLE RANDOM VARIABLES 502 A.4 GAUSSIAN DISTRIBUTION AND CENTRAL LIMIT THEOREM 503 A.5 RANDOM PROCESSES 504 REFERENCES 504 Appendix B Tables and Data 505 B.1 NORMAL (GAUSSIAN) DISTRIBUTION 505 B.2 ERROR FUNCTION 507 B.3 FRESNEL INTEGRALS 508 B.4 GAMMA FUNCTION 508 B.5 BESSEL FUNCTION 511 REFERENCE 511 Abbreviations 513 Index 517 Contents xvi
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Books Books Main library B3 Faculty of Engineering & Technology (Electrical) 621.3824 S.S.A (Browse shelf(Opens below)) Available 00011796

engineering bookfair2015

Includes bibliographical references and index.

Preface to the Second Edition xix
Preface to the First Edition
1. Introduction: The Wireless Communication Channel 1
1.1 INTRODUCTION 1
1.2 CONCEPT OF A WIRELESS CHANNEL 2
1.3 THE ELECTROMAGNETIC SPECTRUM 4
1.4 HISTORY 5
1.5 SYSTEM TYPES 7
1.6 AIMS OF CELLULAR SYSTEMS 8
1.7 CELLULAR NETWORKS 9
1.8 THE CELLULAR CONCEPT 9
1.9 TRAFFIC 13
1.10 MULTIPLE ACCESS SCHEMES AND DUPLEXING 17
1.10.1 Frequency Division Multiple Access 17
1.10.2 Time Division Multiple Access 18
1.10.3 Code Division Multiple Access 18
1.11 AVAILABLE DATA RATES 19
1.12 STRUCTURE OF THIS BOOK 20
1.13 CONCLUSION 22
REFERENCES 22
PROBLEMS 23
2. Properties of Electromagnetic Waves 25
2.1 INTRODUCTION 25
2.2 MAXWELL?S EQUATIONS 25
2.3 PLANE WAVE PROPERTIES 26
2.3.1 FIELD RELATIONSHIPS 27
2.3.2 WAVE IMPEDANCE 27
Q1
2.3.3 Poynting Vector 28
2.3.4 Phase Velocity 28
2.3.5 Lossy Media 28
2.4 POLARISATION 32
2.4.1 Polarisation States 32
2.4.2 Mathematical Representation of Polarisation 32
2.4.3 Random Polarisation 33
2.5 CONCLUSION 34
REFERENCES 34
PROBLEMS 34
3. Propagation Mechanisms 37
3.1 INTRODUCTION 37
3.2 REFLECTION, REFRACTION AND TRANSMISSION 37
3.2.1 Lossless Media 37
3.2.2 Lossy Media 41
3.2.3 Typical Reflection and Transmission Coefficients 42
3.3 ROUGH SURFACE SCATTERING 45
3.4 GEOMETRICAL OPTICS 47
3.4.1 Principles 47
3.4.2 Formulation 49
3.5 DIFFRACTION 50
3.5.1 Principle 50
3.5.2 Single Knife-Edge Diffraction 51
3.5.3 Other Diffracting Obstacles: Geometrical Theory of Diffraction 54
3.6 CONCLUSION 59
REFERENCES 59
PROBLEMS 59
4. Antenna Fundamentals 61
4.1 INTRODUCTION 61
4.2 PRINCIPLES 61
4.2.1 What is an Antenna? 61
4.2.2 Necessary Conditions for Radiation 62
4.2.3 Near-Field and Far-Field Regions 62
4.2.4 Far-Field Radiation from Wires 63
4.3 ANTENNA PARAMETERS 65
4.3.1 Radiation Pattern 65
4.3.2 Directivity 67
4.3.3 Radiation Resistance and Efficiency 67
4.3.4 Power Gain 68
4.3.5 Bandwidth 70
4.3.6 Reciprocity 70
4.3.7 Receiving Antenna Aperture 71
4.3.8 Beamwidth and Directivity 71
4.3.9 The Friis Formula: Antennas in Free Space 71
4.3.10 Polarisation Matching 72
viii Contents
4.4 PRACTICAL DIPOLES 73
4.4.1 Dipole Structure 73
4.4.2 Current Distribution 74
4.4.3 Radiation Pattern 74
4.4.4 Input Impedance 77
4.5 ANTENNA ARRAYS 77
4.5.1 Introduction 77
4.5.2 Linear and Planar Arrays 77
4.5.3 The Uniform Linear Array 77
4.5.4 Parasitic Elements: Uda?Yagi Antennas 78
4.5.5 Reflector Antennas 79
4.5.6 Monopole Antennas 80
4.5.7 Corner Reflectors 80
4.5.8 Parabolic Reflector Antennas 81
4.6 HORN ANTENNAS 82
4.7 LOOP ANTENNAS 83
4.8 HELICAL ANTENNAS 83
4.9 PATCH ANTENNAS 84
4.10 CONCLUSION 85
REFERENCES 85
PROBLEMS 86
5. Basic Propagation Models 89
5.1 INTRODUCTION 89
5.2 DEFINITION OF PATH LOSS 89
5.3 A BRIEF NOTE ON DECIBELS 92
5.4 NOISE MODELLING 93
5.5 FREE SPACE LOSS 97
5.6 PLANE EARTH LOSS 98
5.7 LINK BUDGETS 101
5.8 CONCLUSION 103
REFERENCE 103
PROBLEMS 103
6. Terrestrial Fixed Links 105
6.1 INTRODUCTION 105
6.2 PATH PROFILES 105
6.3 TROPOSPHERIC REFRACTION 108
6.3.1 Fundamentals 108
6.3.2 Time Variability 111
6.3.3 Ducting and Multipath 111
6.4 OBSTRUCTION LOSS 113
6.5 APPROXIMATE MULTIPLE KNIFE-EDGE
DIFFRACTION 115
6.5.1 The Deygout Method 115
6.5.2 The Causebrook Correction 116
6.5.3 The Giovanelli Method 117
Contents ix
6.5.4 Test Cases 117
6.6 THE MULTIPLE-EDGE DIFFRACTION INTEGRAL 121
6.6.1 Slope-UTD Multiple-Edge Diffraction Model 122
6.6.2 Test Case: Comparison of Multiple Models 126
6.7 DIFFRACTION OVER OBJECTS OF FINITE SIZE 127
6.8 OTHER METHODS FOR PREDICTING TERRAIN DIFFRACTION 129
6.8.1 The Integral Equation Model 129
6.8.2 The Parabolic Equation Method 131
6.9 INFLUENCE OF CLUTTER 134
6.10 CONCLUSION 135
REFERENCES 135
PROBLEMS 137
7. Satellite Fixed Links 139
7.1 INTRODUCTION 139
7.2 TROPOSPHERIC EFFECTS 140
7.2.1 Attenuation 140
7.2.2 Rain Attenuation 141
7.2.3 Gaseous Absorption 146
7.2.4 Tropospheric Refraction 148
7.2.5 Tropospheric Scintillation 148
7.2.6 Depolarisation 151
7.2.7 Sky Noise 153
7.3 IONOSPHERIC EFFECTS 155
7.3.1 Faraday Rotation 158
7.3.2 Group Delay 159
7.3.3 Dispersion 159
7.3.4 Ionospheric Scintillation 160
7.3.5 Summary of Ionospheric Effects 160
7.4 SATELLITE EARTH STATION ANTENNAS 160
7.5 CONCLUSION 161
REFERENCES 161
PROBLEMS 162
8. Macrocells 163
8.1 INTRODUCTION 163
8.2 DEFINITION OF PARAMETERS 163
8.3 EMPIRICAL PATH LOSS MODELS 164
8.3.1 Clutter Factor Models 165
8.3.2 The Okumura?Hata Model 167
8.3.3 The Cost 231?Hata Model 169
8.3.4 The Lee Model 169
8.3.5 The Ibrahim and Parsons Model 170
8.3.6 Environment Categories 171
8.4 PHYSICAL MODELS 172
8.4.1 The Allsebrook and Parsons Model 172
x Contents
8.4.2 The Ikegami Model 173
8.4.3 Rooftop Diffraction 174
8.4.4 The Flat Edge Model 175
8.4.5 The Walfisch?Bertoni Model 178
8.4.6 Cost 231/Walfisch?Ikegami Model 180
8.5 ITU-R MODELS 181
8.5.1 ITU-R Recommendation P.1411 181
8.5.2 ITU-R Recommendation P.1546 182
8.6 COMPARISON OF MODELS 182
8.7 COMPUTERISED PLANNING TOOLS 183
8.8 CONCLUSION 183
REFERENCES 183
PROBLEMS 185
9. Shadowing 187
9.1 INTRODUCTION 187
9.2 STATISTICAL CHARACTERISATION 187
9.3 PHYSICAL BASIS FOR SHADOWING 189
9.4 IMPACT ON COVERAGE 189
9.4.1 Edge of Cell 189
9.4.2 Whole Cell 192
9.5 LOCATION VARIABILITY 195
9.6 CORRELATED SHADOWING 196
9.6.1 Serial Correlation 197
9.6.2 Site-to-Site Correlation 199
9.7 CONCLUSION 205
REFERENCES 205
PROBLEMS 206
10. Narrowband Fast Fading 209
10.1 INTRODUCTION 209
10.2 BASEBAND CHANNEL REPRESENTATION 209
10.3 THE AWGN CHANNEL 210
10.4 THE NARROWBAND FADING CHANNEL 213
10.5 WHEN DOES FADING OCCUR IN PRACTICE? 214
10.6 THE RAYLEIGH DISTRIBUTION 215
10.7 DISTRIBUTION OF THE SNR FOR A RAYLEIGH CHANNEL 218
10.8 THE RICE DISTRIBUTION 221
10.9 THE NAKAGAMI- m DISTRIBUTION 226
10.10 OTHER FADING DISTRIBUTIONS 227
10.11 SECOND-ORDER FAST-FADING STATISTICS 227
10.11.1 The Doppler Effect 228
10.11.2 The Classical Doppler Spectrum 230
10.12 AUTOCORRELATION FUNCTION 236
10.13 NARROWBAND MOBILE RADIO CHANNEL SIMULATIONS 238
10.14 CONCLUSION 239
Contents xi
REFERENCES 239
PROBLEMS 240
11. Wideband Fast Fading 241
11.1 INTRODUCTION 241
11.2 EFFECT OF WIDEBAND FADING 242
11.3 WIDEBAND CHANNEL MODEL 245
11.4 WIDEBAND CHANNEL PARAMETERS 246
11.5 FREQUENCY DOMAIN EFFECTS 251
11.6 THE BELLO FUNCTIONS 252
11.7 WIDEBAND FADING IN FIXED LINKS 253
11.8 OVERCOMING WIDEBAND CHANNEL IMPAIRMENTS 254
11.9 CONCLUSION 254
REFERENCES 255
PROBLEMS 255
12. Microcells 257
12.1 INTRODUCTION 257
12.2 EMPIRICAL MODELS 257
12.2.1 Dual-Slope Model 257
12.2.2 The Lee Microcell Model 259
12.2.3 The Har?Xia-Bertoni Model 260
12.3 PHYSICAL MODELS 262
12.4 LINE-OF-SIGHT MODELS 264
12.4.1 Two-Ray Model 264
12.4.2 Street Canyon Models 265
12.4.3 ITU-R P.1411 Street Canyon Model 267
12.4.4 Random Waveguide Model 268
12.5 NON-LINE-OF-SIGHT MODELS 270
12.5.1 Propagation Mechanisms and Cell Planning Considerations 270
12.5.2 Recursive Model 273
12.5.3 ITU-R P.1411 Non-Line-of-Sight Model 274
12.5.4 Site-Specific Ray Models 275
12.6 DISCUSSION 276
12.7 MICROCELL SHADOWING 277
12.8 NARROWBAND FADING 277
12.9 WIDEBAND EFFECTS 277
12.10 CONCLUSION 278
REFERENCES 279
PROBLEMS 280
13. Picocells 283
13.1 INTRODUCTION 283
13.2 EMPIRICAL MODELS OF PROPAGATION WITHIN BUILDINGS 283
13.2.1 Wall and Floor Factor Models 283
xii Contents
13.2.2 COST231 Multi-Wall Model 285
13.2.3 Ericsson Model 286
13.2.4 Empirical Models for Wireless Lan 286
13.2.5 Measurement-Based Prediction 288
13.3 PHYSICAL MODELS OF INDOOR PROPAGATION WITHIN
BUILDINGS 288
13.3.1 Ray-Tracing Models for Picocells 289
13.3.2 Reduced-Complexity UTD Indoor Model 289
13.3.3 Propagation Between Floors 291
13.3.4 Propagation on Single Floors 292
13.4 MODELS OF PROPAGATION INTO BUILDINGS 293
13.4.1 Introduction 293
13.4.2 Measured Behaviour 294
13.4.3 COST231 Line-of-Sight Model 294
13.4.4 Floor Gain Models 295
13.4.5 COST231 Non-line-of-Sight Model 296
13.4.6 Propagation Mechanisms 297
13.5 CONSTITUTIVE PARAMETERS OF BUILDING MATERIALS
FOR PHYSICAL MODELS 299
13.6 SHADOWING 300
13.7 MULTIPATH EFFECTS 300
13.8 ULTRA-WIDEBAND INDOOR PROPAGATION 302
13.9 PROPAGATION IN TUNNELS AND OTHER ENCLOSED
SPACES 303
13.9.1 Measured Behaviour 303
13.9.2 Models of Tunnel Propagation 305
13.10 DISCUSSION 309
13.11 DISTRIBUTION SYSTEMS FOR INDOOR AND ENCLOSED
SPACE APPLICATIONS 309
13.11.1 Distributed Antenna Systems ? General Considerations 310
13.11.2 Passive Distributed Antenna Systems 310
13.11.3 Active Distributed Antenna Systems 311
13.11.4 Hybrid Systems 314
13.11.5 Radiating Cables 314
13.11.6 Repeaters 319
13.11.7 Digital Distribution 320
13.11.8 Selecting The Most Appropriate Distribution System 321
13.12 INDOOR LINK BUDGETS 321
13.13 CONCLUSION 326
REFERENCES 326
PROBLEMS 328
14. Megacells 331
14.1 INTRODUCTION 331
14.2 SHADOWING AND FAST FADING 332
14.2.1 Introduction 332
Contents xiii
14.2.2 Local Shadowing Effects 333
14.2.3 Local Multipath Effects 334
14.3 EMPIRICAL NARROWBAND MODELS 336
14.4 STATISTICAL MODELS 337
14.4.1 Loo Model 339
14.4.2 Corazza Model 341
14.4.3 Lutz Model 341
14.5 SHADOWING STATISTICS 345
14.6 PHYSICAL-STATISTICAL MODELS FOR BUILT-UP AREAS 345
14.6.1 Building Height Distribution 348
14.6.2 Time-Share of Shadowing 349
14.6.3 Time Series Model 350
14.7 WIDEBAND MODELS 353
14.8 MULTI-SATELLITE CORRELATIONS 354
14.9 OVERALL MOBILE SATELLITE CHANNEL MODEL 356
14.10 CONCLUSION 357
REFERENCES 357
PROBLEMS 359
15. Antennas for Mobile Systems 361
15.1 INTRODUCTION 361
15.2 MOBILE TERMINAL ANTENNAS 361
15.2.1 Performance Requirements 361
15.2.2 Small Antenna Fundamentals 362
15.2.3 Dipoles 364
15.2.4 Helical Antennas 366
15.2.5 Inverted-F Antennas 366
15.2.6 Patches 368
15.2.7 Mean Effective Gain (MEG) 368
15.2.8 Human Body Interactions and Specific Absorption Rate
(SAR) 370
15.2.9 Mobile Satellite Antennas 374
15.3 BASE STATION ANTENNAS 376
15.3.1 Performance Requirements in Macrocells 376
15.3.2 Macrocell Antenna Design 377
15.3.3 Macrocell Antenna Diversity 380
15.3.4 Microcell Antennas 381
15.3.5 Picocell Antennas 382
15.3.6 Antennas for Wireless Lan 385
15.4 CONCLUSION 386
REFERENCES 386
PROBLEMS 388
16. Overcoming Narrowband Fading via Diversity 391
16.1 INTRODUCTION 391
16.2 CRITERIA FOR USEFUL BRANCHES 392
xiv Contents
16.3 SPACE DIVERSITY 393
16.3.1 General Model 393
16.3.2 Mobile Station Space Diversity 395
16.3.3 Handset Diversity Antennas 397
16.3.4 Base Station Space Diversity 397
16.4 POLARISATION DIVERSITY 399
16.4.1 Base Station Polarisation Diversity 399
16.4.2 Mobile Station Polarisation Diversity 400
16.5 TIME DIVERSITY 402
16.6 FREQUENCY DIVERSITY 403
16.7 COMBINING METHODS 403
16.7.1 Selection Combining 403
16.7.2 Switched Combining 405
16.7.3 Equal-Gain Combining 406
16.7.4 Maximum Ratio Combining 407
16.7.5 Comparison of Combining Methods 408
16.8 DIVERSITY FOR MICROWAVE LINKS 409
16.9 MACRODIVERSITY 410
16.10 TRANSMIT DIVERSITY 410
16.11 CONCLUSION 411
REFERENCES 411
PROBLEMS 412
17. Overcoming Wideband Fading 413
17.1 INTRODUCTION 413
17.2 SYSTEM MODELLING 413
17.2.1 Continuous-Time System Model 413
17.2.2 Discrete-Time System Model 414
17.2.3 First Nyquist Criterion 415
17.3 LINEAR EQUALISERS 416
17.3.1 Linear Equaliser Structure 416
17.3.2 Zero-Forcing Equaliser 417
17.3.3 Least Mean Square Equaliser 418
17.4 ADAPTIVE EQUALISERS 419
17.4.1 Direct Matrix Inversion 420
17.4.2 LMS Algorithm 421
17.4.3 Other Convergence Algorithms 421
17.5 NON-LINEAR EQUALISERS 422
17.5.1 Decision Feedback 423
17.5.2 Maximum Likelihood Sequence Estimator 423
17.5.3 Viterbi Equalisation 424
17.6 RAKE RECEIVERS 427
17.7 OFDM RECEIVERS 430
17.8 CONCLUSION 435
REFERENCES 435
PROBLEMS 436
Contents xv
18. Adaptive Antennas 437
18.1 INTRODUCTION 437
18.2 BASIC CONCEPTS 437
18.3 ADAPTIVE ANTENNA APPLICATIONS 438
18.3.1 Example of Adaptive Antenna Processing 438
18.3.2 Spatial Filtering for Interference Reduction 440
18.3.3 Space Division Multiple Access 441
18.3.4 Multiple-Input Multiple-Output Systems 441
18.4 OPTIMUM COMBINING 443
18.4.1 Formulation 443
18.4.2 Steering Vector for Uniform Linear Array 445
18.4.3 Steering Vector for Arbitrary Element Positions 446
18.4.4 Optimum Combiner in a Free Space Environment 447
18.4.5 Optimum Combiner in a Fading Environment 449
18.4.6 Implementation of Adaptive Antennas 450
18.4.7 Adaptive Antenna Channel Parameters 450
18.5 MULTIPLE-INPUT MULTIPLE-OUTPUT SYSTEMS 453
18.5.1 MIMO Signal Model 453
18.5.2 MIMO Channel Capacity 455
18.5.3 Trade-Off Between Diversity and Capacity for MIMO 458
18.5.4 Particular STC Schemes 459
18.5.5 MIMO Channel Modelling 460
18.5.6 MIMO Channel Models for Specific Systems 462
18.5.7 Impact of Antennas on MIMO Performance 464
18.6 ADAPTIVE ANTENNAS IN A PRACTICAL SYSTEM 465
18.7 CONCLUSION 466
REFERENCES 466
PROBLEMS 468
19. Channel Measurements for Mobile Systems 469
19.1 INTRODUCTION 469
19.2 APPLICATIONS FOR CHANNEL MEASUREMENTS 469
19.2.1 Tuning Empirical Path Loss Models 469
19.2.2 Creating Synthetic Channel Models 470
19.2.3 Existing Coverage 471
19.2.4 Design Survey 471
19.3 IMPACT OF MEASUREMENT INACCURACIES 471
19.4 SIGNAL SAMPLING ISSUES 473
19.4.1 Estimators of the Local Mean 473
19.4.2 Sampling Rate 476
19.5 MEASUREMENT SYSTEMS 479
19.5.1 Narrowband Channel Sounding 479
19.5.2 Wideband Channel Measurement Techniques 480
19.5.3 Other Measurements 481
19.6 EQUIPMENT CALIBRATION AND VALIDATION 481
19.6.1 General 481
19.6.2 Transmitters 482
xvi Contents
19.6.3 Receivers 482
19.6.4 Passive Elements 483
19.7 OUTDOOR MEASUREMENTS 484
19.7.1 General 484
19.7.2 Measurement Campaign Plan 484
19.7.3 Navigation 484
19.7.4 Size and Shape of Area for Averaging 486
19.7.5 Outdoor Testing Guidelines 488
19.8 INDOOR MEASUREMENTS 488
19.8.1 General 488
19.8.2 Navigation 489
19.8.3 Selection of Walk Routes 490
19.8.4 Equipment 491
19.8.5 Documentation 493
19.9 CONCLUSION 493
REFERENCES 493
PROBLEMS 494
20. Future Developments in the Wireless Communication Channel 497
20.1 INTRODUCTION 497
20.2 HIGH-RESOLUTION DATA 497
20.3 ANALYTICAL FORMULATIONS 498
20.4 PHYSICAL-STATISTICAL CHANNEL MODELLING 498
20.5 MULTIDIMENSIONAL CHANNEL MODELS 498
20.6 REAL-TIME CHANNEL PREDICTIONS 498
20.7 INTELLIGENT ANTENNAS 499
20.8 DISTRIBUTED AND AD-HOC CELL ARCHITECTURES 499
20.9 CONCLUSION 500
REFERENCES 500
Appendix A Statistics, Probability and Stochastic Processes 501
A.1 INTRODUCTION 501
A.2 SINGLE RANDOM VARIABLES 501
A.3 MULTIPLE RANDOM VARIABLES 502
A.4 GAUSSIAN DISTRIBUTION AND CENTRAL LIMIT THEOREM 503
A.5 RANDOM PROCESSES 504
REFERENCES 504
Appendix B Tables and Data 505
B.1 NORMAL (GAUSSIAN) DISTRIBUTION 505
B.2 ERROR FUNCTION 507
B.3 FRESNEL INTEGRALS 508
B.4 GAMMA FUNCTION 508
B.5 BESSEL FUNCTION 511
REFERENCE 511
Abbreviations 513
Index 517
Contents xvi

There are no comments on this title.

to post a comment.